留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

向阳坪铀矿床沥青铀矿微区原位LA-ICP-MS U-Pb年龄及稀土元素特征

李杰 黄宏业 刘子杰 张涛 陈琪 邹明亮

李杰, 黄宏业, 刘子杰, 张涛, 陈琪, 邹明亮. 向阳坪铀矿床沥青铀矿微区原位LA-ICP-MS U-Pb年龄及稀土元素特征[J]. 地质科技通报, 2021, 40(1): 90-99. doi: 10.19509/j.cnki.dzkq.2021.0011
引用本文: 李杰, 黄宏业, 刘子杰, 张涛, 陈琪, 邹明亮. 向阳坪铀矿床沥青铀矿微区原位LA-ICP-MS U-Pb年龄及稀土元素特征[J]. 地质科技通报, 2021, 40(1): 90-99. doi: 10.19509/j.cnki.dzkq.2021.0011
Li Jie, Huang Hongye, Liu Zijie, Zhang Tao, Cheng Qi, Zou Mingliang. In-situ U-Pb dating of pitchblende and the REE characteristics using LA-ICP-MS in Xiangyangping uranium deposit[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 90-99. doi: 10.19509/j.cnki.dzkq.2021.0011
Citation: Li Jie, Huang Hongye, Liu Zijie, Zhang Tao, Cheng Qi, Zou Mingliang. In-situ U-Pb dating of pitchblende and the REE characteristics using LA-ICP-MS in Xiangyangping uranium deposit[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 90-99. doi: 10.19509/j.cnki.dzkq.2021.0011

向阳坪铀矿床沥青铀矿微区原位LA-ICP-MS U-Pb年龄及稀土元素特征

doi: 10.19509/j.cnki.dzkq.2021.0011
基金项目: 

国家自然科学基金项目 41702102

中国核工业集团有限公司项目 3210402

详细信息
    作者简介:

    李杰(1991-), 男, 工程师, 主要从事铀矿地质勘查与科研工作。E-mail:lijie568521@qq.com

    通讯作者:

    邹明亮(1983-), 男, 高级工程师, 主要从事铀成矿作用研究。E-mail:zoumingliang2001@163.com

  • 中图分类号: P619.14

In-situ U-Pb dating of pitchblende and the REE characteristics using LA-ICP-MS in Xiangyangping uranium deposit

  • 摘要: 向阳坪矿床作为苗儿山矿田近年来新发现的花岗岩型铀矿床,发育大量原生沥青铀矿脉。为了进一步厘清铀矿床铀成矿年龄体系,采用LA-ICP-MS测试技术,对钻孔中揭露的脉状沥青铀矿开展了微区原位U-Pb同位素定年及稀土元素特征研究。LA-ICP-MS分析结果显示,向阳坪地区存在2期铀矿化,U-Pb年龄为51.59 Ma和41.10 Ma,前者为向阳坪矿床主成矿年龄,后者为后期流体活动导致沥青铀矿蚀变的热事件时间,分别与沙子江矿床主成矿期65~50 Ma、45~40 Ma相吻合。沥青铀矿稀土元素特征表明,稀土元素总量相对较高,具有明显的负Eu异常,其配分模式呈海鸥型,与低-高品位铀矿石的稀土元素配分模式相似,而与新鲜花岗岩、蚀变花岗碎裂岩的"右倾型"相区别。沥青铀矿稀土元素与铀元素的迁移具有同步性,为低温下晶出沉淀的产物。

     

  • 图 1  苗儿山大地构造位置图(a)(据文献[7])和豆乍山(b)、向阳坪矿床(c)地质简图

    1.第四系;2.泥盆系-白垩系;3.元古界-志留系;4.元古界;5.中生代花岗岩;6.古生代花岗岩;7.燕山晚期第一阶段细粒白云母花岗岩;8.燕山早期第三阶段细粒含斑二云母花岗岩;9.印支晚期中细粒二云母花岗岩;10.印支期中粒黑云母花岗岩;11.加里东期粗粒斑状黑云母花岗岩;12.细粒花岗岩脉;13.花岗斑岩脉;14.断裂及编号;15.地质界线;16.产状;17.采样位置

    Figure 1.  Tectonic skematic map showing the position of Miaoershan (a) and geological sketch of Douzhashan uranium deposit (b) and Xiangyangping uranium deposit (c)

    图 2  含沥青铀矿脉花岗碎裂岩(a,b)和沥青铀矿脉背散射电子图像(c)

    Figure 2.  Pitchblende vein granitic cataclastic rock(a, b) and BSE image of pitchblende vein(c)

    图 3  沥青铀矿206Pb/238U表观年龄与Pb总量关系图

    Figure 3.  The relationship between the apparent 206Pb/238U age and total Pb of pitchblende

    图 4  沥青铀矿LA-ICP-MS U-Pb年龄谐和图和206Pb/238U加权年龄平均图

    Figure 4.  Concordia diagrams of LA-ICP-MS U-Pb and the weighted age average diagrams of 206Pb/238U dating of pitchblende

    图 5  沥青铀矿稀土元素球粒陨石标准化分布型式图(3种铀矿类型引自文献[25])

    Figure 5.  Chondrite-normalized REE patterns of pitchblende

    图 6  不同类型岩石稀土元素球粒陨石标准化分布模式图

    Figure 6.  Chondrite-normalized REE patterns of different types of rocks

    图 7  华南典型铀矿床(a)和沙子江铀矿床(b)沥青铀矿年龄直方图

    Figure 7.  Age histogram of pitchblende in typical uranium ore deposits in south China (a) and Shazijiang uranium deposit (b)

    图 8  向阳坪铀矿床沥青铀矿ΣREE-(ΣLREE/ΣHREE)N图解(底图据文献[25])

    Figure 8.  ΣREE-(ΣLREE/ΣHREE)N diagram of pitchblende from Xiangyangping uranium deposit

    表  1  向阳坪矿床沥青铀矿U-Pb同位素分析结果

    Table  1.   U-Pb isotopic composition of pitchblende from Xiangyangping uranium deposit

    编号 U-Pb同位素比值 U-Pb同位素年龄/Ma
    207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U
    3-01 0.073 8 0.001 1 0.007 9 0.000 1 72.31 1.04 50.60 0.67
    3-04 0.062 1 0.001 5 0.006 7 0.000 1 61.16 1.43 42.98 0.83
    3-05 0.056 4 0.001 3 0.006 7 0.000 1 55.75 1.30 42.94 0.82
    3-06 0.068 7 0.000 9 0.007 9 0.000 1 67.43 0.86 50.53 0.53
    3-07 0.068 2 0.000 7 0.008 1 0.000 1 66.97 0.71 51.82 0.50
    3-08 0.068 2 0.000 8 0.007 8 0.000 1 67.04 0.81 50.23 0.49
    3-09 0.074 1 0.000 7 0.008 2 0.000 1 72.54 0.66 52.68 0.46
    3-10 0.072 5 0.002 0 0.008 1 0.000 2 71.11 1.93 51.91 1.32
    3-11 0.066 2 0.001 1 0.006 6 0.000 1 65.10 1.05 42.54 0.57
    3-12 0.073 2 0.000 9 0.008 1 0.000 1 71.74 0.87 51.85 0.46
    3-13 0.071 7 0.000 8 0.008 1 0.000 1 70.27 0.79 51.97 0.57
    3-14 0.059 0 0.000 7 0.006 6 0.000 1 58.20 0.66 42.16 0.42
    3-15 0.069 1 0.001 0 0.007 9 0.000 1 67.85 0.91 50.44 0.57
    3-17 0.073 0 0.001 2 0.008 1 0.000 1 71.53 1.10 51.99 0.73
    3-18 0.059 6 0.001 1 0.006 6 0.000 1 58.82 1.04 42.66 0.69
    3-20 0.054 7 0.000 6 0.006 5 0.000 1 54.11 0.57 41.67 0.39
    3-29 0.075 5 0.000 7 0.008 2 0.000 1 73.89 0.68 52.96 0.49
    下载: 导出CSV

    表  2  向阳坪矿床沥青铀矿稀土元素分析结果

    Table  2.   REE composition of pitchblende from Xiangyangping uranium deposits

    点号 3-01 3-04 3-05 3-06 3-07 3-08 3-09 3-10 3-11 3-12 3-13 3-14 3-15 3-17 3-18 3-20 3-29
    La 147.00 155.10 29.31 36.62 26.99 41.37 59.18 40.15 113.26 73.71 71.94 94.10 76.29 43.60 95.51 97.25 55.06
    Ce 352.53 276.68 62.30 104.94 75.57 130.17 170.10 121.33 235.89 157.41 135.77 145.57 135.10 93.90 80.20 98.35 165.81
    Pr 36.35 34.35 8.48 12.08 8.61 14.42 19.52 13.30 29.22 18.83 16.12 16.00 15.02 10.51 9.92 9.21 19.41
    Nd 165.04 146.49 45.42 51.12 39.19 79.91 110.77 63.83 133.17 78.16 73.83 71.75 81.12 50.56 34.82 50.88 98.34
    Sm 60.19 33.29 18.64 17.36 15.16 31.38 42.96 27.87 52.29 33.43 25.51 31.11 30.93 14.17 11.11 15.09 39.32
    Eu 2.29 2.17 0.82 0.76 0.83 1.73 2.26 1.48 2.86 1.97 1.41 1.36 1.80 1.11 0.67 0.96 2.13
    Gd 85.58 67.02 74.50 49.04 43.45 68.99 80.90 69.19 95.16 67.30 44.38 44.42 55.38 47.41 37.50 27.63 86.73
    TbwB/10-6 13.29 10.01 7.48 6.66 4.37 11.55 11.03 10.75 15.23 10.98 8.70 8.43 7.53 7.42 4.75 5.95 14.14
    Dy 77.97 74.20 34.57 35.30 26.48 61.85 62.47 53.69 76.38 56.19 44.06 38.56 43.05 36.21 23.96 25.37 66.23
    Ho 14.34 18.91 13.36 11.13 6.89 13.35 13.89 10.89 15.94 12.31 11.27 9.23 9.90 7.47 6.91 8.09 16.65
    Er 41.16 34.40 20.14 26.13 18.17 36.22 39.16 33.52 43.43 33.84 26.96 22.33 25.73 23.93 17.18 18.26 40.23
    Tm 6.05 5.79 2.14 4.31 2.37 6.08 5.51 5.35 6.89 4.36 3.97 3.14 4.47 3.09 2.42 3.23 5.78
    Yb 63.71 51.92 33.63 29.46 17.55 40.54 34.95 36.95 48.15 32.58 26.98 30.42 25.14 23.40 12.21 20.26 41.81
    Lu 7.08 5.83 4.12 2.78 2.87 4.91 4.71 4.15 5.83 4.36 3.73 3.93 4.34 3.50 2.96 2.86 7.81
    Y 673.15 527.36 436.54 425.43 320.31 549.58 554.65 544.31 622.00 513.05 418.48 374.52 439.17 432.89 348.80 382.50 565.37
    ΣREE 1 072.57 916.15 354.91 387.68 288.50 542.50 657.39 492.44 873.69 585.43 494.62 520.35 515.79 366.27 340.11 383.40 659.46
    LREE 763.40 648.07 164.97 222.89 166.35 298.98 404.78 267.95 566.69 363.51 324.58 359.88 340.25 213.84 232.22 271.74 380.08
    HREE 309.17 268.07 189.94 164.79 122.15 243.52 252.61 224.49 307.00 221.92 170.04 160.47 175.53 152.43 107.89 111.65 279.38
    LREE/HREE 2.47 2.42 0.87 1.35 1.36 1.23 1.60 1.19 1.85 1.64 1.91 2.24 1.94 1.40 2.15 2.43 1.36
    (La/Yb)N 1.66 2.14 0.63 0.89 1.10 0.73 1.21 0.78 1.69 1.62 1.91 2.22 2.18 1.34 5.61 3.44 0.94
    (La/Sm)N 1.58 3.01 1.02 1.36 1.15 0.85 0.89 0.93 1.40 1.42 1.82 1.95 1.59 1.99 5.55 4.16 0.90
    δEu 0.10 0.14 0.07 0.08 0.10 0.11 0.12 0.10 0.12 0.13 0.13 0.11 0.13 0.13 0.10 0.14 0.11
    δCe 1.18 0.93 0.97 1.22 1.22 1.31 1.23 1.29 1.01 1.04 0.98 0.92 0.98 1.08 0.64 0.81 1.24
    TE1, 3 1.01 0.87 0.70 0.91 0.86 1.01 0.92 1.03 0.95 0.97 0.93 0.89 0.82 0.94 0.70 0.73 0.97
    下载: 导出CSV
  • [1] 吴昆明, 李大雁, 陈琪, 等.广西向阳坪铀矿床成矿地质特征[J].铀矿地质, 2016, 32(4):224-229. doi: 10.3969/j.issn.1000-0658.2016.04.005
    [2] 欧阳平宁, 黄满湘, 刘鑫扬, 等.向阳坪铀矿床断裂构造原生晕特征及找矿意义[J].铀矿地质, 2012, 28(2):78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201202002.htm
    [3] 陈琪, 肖建军, 范立亭, 等.广西向阳坪铀矿床微量元素和稀土元素地球化学特征[J].铀矿地质, 2013, 29(3):152-161. doi: 10.3969/j.issn.1000-0658.2013.03.005
    [4] 谢晓华, 陈卫锋, 赵葵东, 等.桂东北豆乍山花岗岩年代学与地球化学特征[J].岩石学报, 2008, 24(6):1302-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806014.htm
    [5] 李妩巍, 王敢, 陈卫锋, 等.广西向阳坪地区剪切带与铀成矿作用[J].昆明理工大学学报:自然科学版, 2011, 36(5):1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201105002.htm
    [6] Hu H, Wang R C, Chen W F, et al.Timing of hydrothermal activity associated with the Douzhashan uranium-bearing granite and its significance for uranium mineralization in northeastern Guangxi, China[J].China Science Bulletin, 2013, 58(34):4319-4328. doi: 10.1007/s11434-013-5986-9
    [7] Zhao K D, Jiang S Y, Ling H F, et al.Reliability of LA-ICP-MS U-Pb dating of zircons with high U concentrations:A case study from the U-bearing Douzhashan Granite in South China[J].Chemical Geology, 2014, 389:110-121. doi: 10.1016/j.chemgeo.2014.09.018
    [8] Zhao K D, Jiang S Y, Ling H F, et al.Late Triassic U-bearing and barren granites in the Miao'ershan batholith, South China:Petrogenetic discrimination and exploration significance[J].Ore Geology Reviews, 2016, 77:260-278. doi: 10.1016/j.oregeorev.2016.02.016
    [9] 胡欢, 王汝成, 陈卫锋, 等.桂东北豆乍山产铀花岗岩的铀源矿物研究[J].地质论评, 2012, 58(6):1056-1068. doi: 10.3969/j.issn.0371-5736.2012.06.006
    [10] 秦蕾胜.桂北苗儿山向阳坪铀矿床蚀变岩及矿物学特征研究[D].南昌: 东华理工大学, 2018.
    [11] 石少华, 胡瑞忠, 温汉捷, 等.桂北沙子江铀矿床成矿年代学研究:沥青铀矿U-Pb同位素年龄及其地质意义[J].地质学报, 2010, 84(8):1175-1182. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008011.htm
    [12] Luo J C, Hu R Z, Shi S H.Timing of uranium mineralization and geological implications of Shazijiang granite-hosted uranium deposit in Guangxi, South China:New constraint from chemical U-Pb age[J].Journal of Earth Science, 2015, 26(6):911-919. doi: 10.1007/s12583-015-0542-y
    [13] 王正庆.广西苗儿山花岗岩型铀矿床成矿机制研究[D].北京: 核工业北京地质研究院, 2018.
    [14] 骆金诚, 石少华, 陈佑纬, 等.铀矿床定年研究进展评述[J].岩石学报, 2019, 35(2):589-605. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201902019.htm
    [15] 邱啸飞, 凌文黎.微区原位普通铅同位素分析技术及其地质应用进展[J].地质科技情报, 2009, 28(5):118-124. doi: 10.3969/j.issn.1000-7849.2009.05.018
    [16] 石少华, 胡瑞忠, 温汉捷, 等.桂北沙子江铀矿床稀土元素地球化学特征[J].矿物岩石, 2011, 31(1):36-42. doi: 10.3969/j.issn.1001-6872.2011.01.006
    [17] 杜云, 罗小亚, 黄革非, 等.湖南省城步县落家冲钨矿床地质特征及找矿前景分析[J].地质科技情报, 2017, 36(5):187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705025.htm
    [18] Zong K Q, Chen J Y, Hu Z C, et al.In-situ U-Pb dating of uraninite by fs-LA-ICP-MS[J].Science China:Earth Sciences, 2015, 58:1731-1740. doi: 10.1007/s11430-015-5154-y
    [19] Hu Z C, Zhang W, Liu Y S, et al.A novel "wave" signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis:Application to lead isotope analysis[J].Analytical Chemistry, 2015, 87:1152-1157. doi: 10.1021/ac503749k
    [20] Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004
    [21] Liu Y S, Gao S, Hu Z C, et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J].Journal of Petrology, 2010, 51:537-571. doi: 10.1093/petrology/egp082
    [22] Ludwig K R.ISOPLOT 3.00: A geochronological toolkit for microsoft excel[R].Berkeley, California: Berkeley Geochronology Center, 2003.
    [23] 邸文, 李瑞, 陈俊锋, 等.广东大埔岩体LA-ICP-MS锆石U-Pb年龄、地球化学及其地质意义[J].地质科技情报, 2017, 36(6):148-157. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201706016.htm
    [24] Irber W.The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites[J].Geochimica et Cosmochimica Acta, 1999, 63(3):489-508. http://www.sciencedirect.com/science/article/pii/S0016703799000277
    [25] Mercadier J, Cuney M, Lach P, et al.Origin of uranium deposits revealed by their rare earth element signature[J].Terra Nova, 2011, 23(4):264-269. doi: 10.1111/j.1365-3121.2011.01008.x
    [26] 钟福军, 严杰, 夏菲, 等.粤北长江花岗岩型铀矿田沥青铀矿原位U-Pb年代学研究及其地质意义[J].岩石学报, 2019, 35(9):2727-2744. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909007.htm
    [27] Janeczek J, Ewing R C.Structural formula of uraninite[J].Journal of Nuclear Materials, 1992, 190:128-132. doi: 10.1016/0022-3115(92)90082-V
    [28] 陈佑纬, 胡瑞忠, 骆金诚, 等.桂北沙子江铀矿床沥青铀矿原位微区年代学和元素分析:对铀成矿作用的启示[J].岩石学报, 2019, 35(9):2679-2694. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909004.htm
    [29] 武勇, 秦明宽, 郭冬发, 等.康滇地轴中南段牟定1101铀矿区沥青铀矿成矿时代及成因[J].地球科学, 2020, 45(2):419-433. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202002006.htm
    [30] 魏俊浩.初论成矿场与矿产勘查意义[J].地质科技通报, 2020, 39(1):114-129. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9932.shtml
    [31] 胡瑞忠, 毕献武, 苏文超, 等.华南白垩-第三纪地壳拉张与铀成矿的关系[J].地学前缘, 2004, 11(1):153-160. doi: 10.3321/j.issn:1005-2321.2004.01.012
    [32] Li X H.Cretaceous magmatism and lithospheric extension in Southeast China[J].Journal of Asian Earth Sciences, 2000, 18:293-305. doi: 10.1016/S1367-9120(99)00060-7
    [33] 陈跃辉, 陈祖伊、蔡煜琦, 等.华东南中新生代伸展构造时空演化与铀矿化时空分布[J].铀矿地质, 1997, 13(3):129-138. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ199703000.htm
    [34] 张万良, 邹茂卿.华南铀矿成矿年龄统计分析[J].矿产与地质, 2013, 27(4):270-275. doi: 10.3969/j.issn.1001-5663.2013.04.002
    [35] 胡瑞忠, 毕献武, 彭建堂, 等.华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题[J].矿床地质, 2007, 26(2):139-152. doi: 10.3969/j.issn.0258-7106.2007.02.001
    [36] Hu R Z, Bi X W, Zhou M F, et al.Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary[J].Economic Geology, 2008, 103(3):583-598. doi: 10.2113/gsecongeo.103.3.583
    [37] 徐达忠.董坑铀矿床成矿要素及条件的研究[J].矿床地质, 1990, 9(1):70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199001007.htm
    [38] 窦小平, 熊超, 曾文乐, 等.赣西北董坑铀矿床矿化特征及控制因素[J].世界核地质科学, 2015, 32(4):192-199. doi: 10.3969/j.issn.1672-0636.2015.04.002
    [39] Luo J C, Hu R Z, Fayek M, et al.Newly discovered uranium mineralization at ~2.0 Ma in the Menggongjie granite-hosted uranium deposit, South China[J].Journal of Asian Earth Sciences, 2017, 137:241-249. doi: 10.1016/j.jseaes.2017.01.021
    [40] 杜乐天.花岗岩型铀矿文集[M].北京:原子能出版社, 1982.
    [41] 冯明月, 李月湘, 徐展.晶质铀矿中稀土元素的岩石学意义[J].铀矿地质, 1991, 7(5):273-279. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ199105003.htm
    [42] 郭春影, 秦明宽, 徐浩, 等.广西苗儿山铀矿田张家铀矿床成矿时代:沥青铀矿微区原位测定[J].地球科学, 2020, 45(1):72-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202001007.htm
    [43] 薛伟, 宋卡迪, 刘鑫扬, 等.内蒙古多伦县三道沟地区中生代火山岩锆石U-Pb年代学研究及其铀成矿意义[J].地质科技情报, 2019, 38(6):69-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906010.htm
    [44] Frimmel H E, Schedel S, Brätz H.Uraninite chemistry as forensic tool for provenance analysis[J].Applied Geochemistry, 2014, 48:104-121. doi: 10.1016/j.apgeochem.2014.07.013
    [45] Eglinger A, André-Mayer A, Vanderhaeghe O, et al.Geochemical signatures of uranium oxides in the Lufilian belt:From unconformity-related to syn-metamorphic uranium deposits during the Pan-African orogenic cycle[J].Ore Geology Reviews, 2013, 54:197-213. doi: 10.1016/j.oregeorev.2013.04.003
    [46] 石少华, 胡瑞忠, 温汉捷, 等.桂北沙子江铀矿床流体包裹体初步研究[J].矿床地质, 2011, 30(1):33-44. doi: 10.3969/j.issn.0258-7106.2011.01.004
    [47] Depine M, Frimmel H E, Emsbo P, et al.Trace element distribution in uraninite from Mesoarchaean Witwatersrand conglomerates(South Africa) supports placer model and magmatogenic source[J].Mineral Deposita, 2013, 48(4):423-435. doi: 10.1007/s00126-013-0458-3
    [48] 范洪海, 凌洪飞, 王德滋, 等.相山铀矿田成矿机理研究[J].铀矿地质, 2003, 19(4):208-213. doi: 10.3969/j.issn.1000-0658.2003.04.003
    [49] 汪雄武, 王晓地, 刘家齐, 等.湖南骑田岭花岗岩与锡成矿的关系[J].地质科技情报, 2004, 23(2):1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200402000.htm
    [50] McLennan S M, Taylor S R.Rare earth element mobility associated with uranium mineralisation[J].Nature, 1979, 282:247-250. doi: 10.1038/282247a0
    [51] Michard A, Beaucaire C, Michard G.Uranium and rare earth elements in CO2-rich waters from Vals-les-Bains(France)[J].Geochimica et Cosmochimica Acta, 1987, 51(4):901-909. doi: 10.1016/0016-7037(87)90103-7
    [52] Fryer B J, Taylor R P, 李彬贤.晶质铀矿中稀土元素的配分及其对矿石成因的意义[J].世界核地质科学, 1989, 6(3):21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD198903004.htm
    [53] Vinokurov S F, Magazina L O, Strelkova E A.Rare earth and other rare elements in uranium ores of Paleovalley deposits in the Vitim District:Distribution, occurrence, and applied implications[J].Geology of Ore Deposits, 2017, 59(2):156-175. doi: 10.1134/S1075701517020052
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1174
  • PDF下载量:  5092
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-29

目录

    /

    返回文章
    返回