留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于水力走时反演刻画裂隙含水层非均质性

吴双红 刘泉 戚俊杰 裘鹏翔 杨惠宸 陶然 ThomasPtak 胡睿

吴双红, 刘泉, 戚俊杰, 裘鹏翔, 杨惠宸, 陶然, ThomasPtak, 胡睿. 基于水力走时反演刻画裂隙含水层非均质性[J]. 地质科技通报, 2021, 40(1): 175-183. doi: 10.19509/j.cnki.dzkq.2021.0015
引用本文: 吴双红, 刘泉, 戚俊杰, 裘鹏翔, 杨惠宸, 陶然, ThomasPtak, 胡睿. 基于水力走时反演刻画裂隙含水层非均质性[J]. 地质科技通报, 2021, 40(1): 175-183. doi: 10.19509/j.cnki.dzkq.2021.0015
Wu Shuanghong, Liu Quan, Qi Junjie, Qiu Pengxiang, Yang Huichen, Tao Ran, Thomas Ptak, Hu Rui. Characterization of the heterogeneity of a fractured aquifer based on hydraulic travel time inversion[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 175-183. doi: 10.19509/j.cnki.dzkq.2021.0015
Citation: Wu Shuanghong, Liu Quan, Qi Junjie, Qiu Pengxiang, Yang Huichen, Tao Ran, Thomas Ptak, Hu Rui. Characterization of the heterogeneity of a fractured aquifer based on hydraulic travel time inversion[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 175-183. doi: 10.19509/j.cnki.dzkq.2021.0015

基于水力走时反演刻画裂隙含水层非均质性

doi: 10.19509/j.cnki.dzkq.2021.0015
基金项目: 

国家重点研发计划重点专项项目 2019YFC1804303

详细信息
    作者简介:

    吴双红(1995-), 男, 现正攻读地质工程专业硕士学位, 主要从事水文水资源研究工作。E-mail:wush@hhu.edu.cn

    通讯作者:

    胡睿(1979-), 男, 教授, 博士生导师, 主要从事水文地质学的相关研究工作。E-mail:rhu@hhu.edu.cn

  • 中图分类号: P641.1

Characterization of the heterogeneity of a fractured aquifer based on hydraulic travel time inversion

  • 摘要: 获取含水层水力参数空间非均质分布信息是研究地下水渗流、地下水污染物运移等诸多地下水问题的重要基础。然而,受常规勘察技术所限,含水层的非均质性难以直接刻画,尤其在裂隙介质含水层中,水力参数分布的非均质性更加突出,进一步增加了刻画的难度。针对该问题,本研究首先通过德国哥廷根大学北校区内的Neutra试验场地进行的64次抽水试验,获取了该场地不同深度观测点的水头响应曲线,然后使用解析方法对64组数据进行分析和参数评估,同时采用水力走时的方法对井间水力参数分布进行反演计算,最后将得到的结果分别与经典解析解参数估计和热示踪试验结果进行对比验证。结果表明,解析解参数估计的结果虽然能够在一定程度上展现含水层的垂向非均质性,但是无法刻画井间含水层水力参数的非均质分布;与热示踪试验结果的对比验证了基于水力走时反演的水力层析法在刻画裂隙介质水力参数的空间非均质分布的可靠性。

     

  • 图 1  Neutra试验场地地理位置及地下水井分布图

    Figure 1.  Geographic location of the Neutra test site and groundwater well distribution

    图 2  层析式地下水井构造及层析式双气囊测试系统

    a.抽水井与观测井设计图,图中标注距离表示地下至地面距离;b.双气囊系统内部结构图,气囊1为同一个过滤段的第一次试验气囊位置,气囊2为第二次试验气囊位置

    Figure 2.  Structure of the groundwater well and the double-packer test system

    图 3  场地层析式抽水试验设计图

    a.单个抽水深度层析式抽水试验规划图;b.层析式抽水试验总规划图;图中的黑线只代表单次抽水位置和观测位置的数据,并不代表水流或水力信号的传播路径

    Figure 3.  Illustration of the field pumping test with tomographical configuration

    图 4  试验场地完整井长时间抽水数据解析解结果

    Figure 4.  Analytical results of the long-time integral pumping test

    图 5  地下水动力学解析解数据拟合图

    a.抽水深度和观测深度近平行时,水头变化数据解析解结果图汇总; b~i.该数据在抽水28 s左右开始拟合的解析解拟合图

    Figure 5.  Fitting curve of the analytical solution of groundwater dynamics

    图 6  地下水动力学解析解的TSD值参数估计结果统计

    a.导水系数T;b.贮水系数S;c.扩散系数D

    Figure 6.  Statistics of the estimated T, S and D values through analytical solution of groundwater dynamics

    图 7  原始数据与降噪后数据降深曲线

    Figure 7.  Curve of raw and denoised data

    图 8  多项式拟合曲线及其一阶导数曲线

    Figure 8.  Polynomial fitting curve and its curve of first derivative

    图 9  水力走时反演扩散系数D值分布图(最左侧为抽水井位置,最右侧1.9 m处为观测井位置)

    Figure 9.  Distribution of hydraulic diffusivity obtained through hydraulic travel time inversion

    图 10  注水井(a)、观测井(b)温度变化图

    Figure 10.  Temperature variation in the injection well(a), and in the observation well(b)

  • [1] 郭绪磊, 朱静静, 陈乾龙, 等.新型地下水流速流向测量技术及其在岩溶区调查中的应用[J].地质科技情报, 2019, 38(1):249-255. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901027.htm
    [2] 王佳琪, 马瑞, 孙自永.地表水与地下水相互作用带中氮素污染物的反应迁移机理及模型研究进展[J].地质科技情报, 2019(4):270-280. doi: 10.3969/j.issn.1009-6248.2019.04.022
    [3] 傅丽平, 牟中海, 张国成, 等.基于岩石物理相的储层非均质性研究:以昆北油田切12井区E3-1为例[J].地质科技情报, 2018, 37(5):114-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805016.htm
    [4] 刘荷蕾, 马宁.裂隙网络非连续介质渗流场与温度场耦合分析研究[J].黑龙江水利科技, 2018, 46(7):27-29. doi: 10.3969/j.issn.1007-7596.2018.07.008
    [5] 王生维, 陈钟惠.煤储层孔隙、裂隙系统研究进展[J].地质科技情报, 1995, 14(1):53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ501.010.htm
    [6] 李东炎, 戚俊杰, 胡睿.基于抽水试验的地下含水层水动力学参数分析[J].武汉大学学报:工学版, 2019, 52(6):482-488. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201906002.htm
    [7] Ji S H, Nicholl M J, Glass R J, et al.Influence of simple fracture intersections with differing aperture on density-driven immiscible flow:Wetting versus nonwetting flows[J].Water Resources Research, 2006, 42(10):730-732.
    [8] Bour O, Davy P.On the connectivity of three-dimensional fault networks[J].Water Resources Research, 1998, 34(10):2611-2622. doi: 10.1029/98WR01861
    [9] Neuman S P.Trends, prospects and challenges in quantifying flow and transport through fractured rocks[J].Hydrogeology Journal, 2005, 13(1):124-147. doi: 10.1007/s10040-004-0397-2
    [10] Wu C M.Traditional analysis of aquifer tests:Comparing apples to oranges?[J].Water Resources Research, 2005, 41(9):W09402.1-W09402.12 doi: 10.1029/2004WR003717/full
    [11] Blessent D, Therrien R, Lemieux J M.Inverse modeling of hydraulic tests in fractured crystalline rock based on a transition probability geostatistical approach[J].Water Resources Research, 2011, 47(12):W12530.1-W12530.19.
    [12] Illman W A.Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks[J].Groundwater, 2013, 52(5):659-684.
    [13] Ando K, Kostner A, Neuman S.Stochastic continuum modeling of flow and transport in a crystalline rock mass:Fanay-Augres, France, revisited[J].Hydrogeology Journal, 2003, 11(5):521-535. doi: 10.1007/s10040-003-0286-0
    [14] 朱珺峰, 叶天齐, 毛德强.运用水力层析法刻画潜水含水层的非均质性[J].南京大学学报:自然科学, 2011, 47(3):253-264. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201103004.htm
    [15] 郝永红, 叶天齐, 韩宝平, 等.运用水力层析法对含水层裂隙带成像[J].水文地质工程地质, 2008(6):12-17. doi: 10.3969/j.issn.1000-3665.2008.06.004
    [16] 王文梅, 孙蓉琳.水力层析法刻画非均质含水层KS采样时间优化设计[J].地质科技情报, 2015, 34(3):165-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503023.htm
    [17] Yeh T C J, Liu S.Hydraulic tomography:Development of a new aquifer test method[J].Water Resources Research, 2000, 36(8):1-9. doi: 10.1029/2000WR900114
    [18] Zhu J, Yeh T C J.Characterization of aquifer heterogeneity using transient hydraulic tomography[J].Water Resources Research, 2005, 41(7):W07028.1-W07028.10.
    [19] Sharmeen R, Illman W A, Berg S J, et al.Transient hydraulic tomography in a fractured dolostone:Laboratory rock block experiments[J].Water Resources Research, 2012, 48(10):W10532.1-W10532.20.
    [20] 董艳辉, 李国敏, 赵春虎, 等.应用水力层析法刻画含水层非均质性[J].工程勘察, 2009, 37(12):58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200912012.htm
    [21] 蒋立群, 孙蓉琳, 王文梅, 等.水力层析法与克立金法估算非均质含水层渗透系数场比较[J].地球科学, 2017, 42(2):307-314. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201702012.htm
    [22] Vasco D W, Keers H, Karasaki K.Estimation of reservoir properties using transient pressure data:An asymptotic approach[J].Water Resources Research, 2000, 36(12):11-18. doi: 10.1029/2000WR900179
    [23] Bauchler R, Liedl R, Dietrich P.A travel time based hydraulic tomographic approach[J].Water Resources Research, 2003, 39(12):21-28. doi: 10.1029/2003WR002262
    [24] Brauchler R, Hu R, Dietrich P, et al.A field assessment of high-resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography[J].Water Resources Research, 2011, 47(3):37-48. doi: 10.1029/2010WR009635
    [25] Hu R, Brauchler R, Herold M, et al.Hydraulic tomography analog outcrop study:Combining travel time and steady shape inversion[J].Journal of Hydrology, 2011, 409(1/2):350-362. http://www.sciencedirect.com/science/article/pii/S0022169411005774
    [26] Read T, Bour O, Bense V, et al.Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing[J].Geophysical Research Letters, 2013, 40(10):2055-2059. doi: 10.1002/grl.50397
    [27] Leaf A T, Hart D J, Bahr J M.Active thermal tracer tests for improved hydrostratigraphic characterization[J].Groundwater, 2012, 50(5):726-735. doi: 10.1111/j.1745-6584.2012.00913.x
    [28] Klepikova M V, Borgne T L, Bour O, et al.Passive temperature tomography experiments to characterize transmissivity and connectivity of preferential flow paths in fractured media[J].Journal of Hydrology, 2014, 512:549-562. doi: 10.1016/j.jhydrol.2014.03.018
    [29] Qiu P, Hu R, Hu L, et al.A numerical study on travel time based hydraulic tomography using the sirt algorithm with cimmino iteration[J].Water, 2019, 11(5):31-38. http://www.researchgate.net/publication/332771424_A_Numerical_Study_on_Travel_Time_Based_Hydraulic_Tomography_Using_the_SIRT_Algorithm_with_Cimmino_Iteration
    [30] Ma Rui, Zheng Chunmiao.Effects of density and viscosity in modeling heat as a groundwater tracer[J].Groundwater, 2010, 48(3):380-389.
    [31] Anderson M P.Heat as a ground water tracer[J].Groundwater, 2005, 43(6):951-968. doi: 10.1111/j.1745-6584.2005.00052.x
    [32] 薛禹群.地下水动力学[M].北京:地质出版社, 1997.
    [33] 周志芳, 汤瑞凉, 汪斌.基于抽水试验资料确定含水层水文地质参数[J].河海大学学报:自然科学版, 1999(3):5-8. doi: 10.3321/j.issn:1000-1980.1999.03.002
    [34] Yang H, Hu R, Qiu P, et al.Application of wavelet de-noising for travel-time based hydraulic tomography[J].Water, 2020, 12(6):41-48. http://www.researchgate.net/publication/341763315_Application_of_Wavelet_De-Noising_for_Travel-Time_Based_Hydraulic_Tomography
  • 加载中
图(10)
计量
  • 文章访问数:  737
  • PDF下载量:  4995
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-20

目录

    /

    返回文章
    返回