Research advances on rare metal pegmatite deposits
-
摘要: 伟晶岩型矿床是世界上重要的稀有金属矿床类型之一,也是当前国际矿床学研究热点之一。近年来该类稀有金属矿床在分类、成矿流体及成矿物质来源、伟晶岩成岩方式和稀有金属富集机制等方面的研究取得了一些重要进展。伟晶岩通常与母质岩浆具有密切的时空关系,但不少也与母质岩浆无成因关系。伟晶岩稀有金属矿床成矿熔体/流体具有低黏度、富水、高分散性、富碱等性质,可导致P、F和B等元素在伟晶岩中的极端富集,使其与稀有金属组成各类络合物或化合物而迁移与富集。富含Li-Cs-Ta(LCT)型伟晶岩与S型花岗岩关系紧密,成矿物质主要起源于黑色页岩等海相沉积物质,而富含Nb-Y-F(NYF)型伟晶岩常与A型花岗岩联系紧密,属同源岩浆演化和矿化。花岗质岩浆分异结晶和地壳或地幔岩石的部分熔融是伟晶岩两种主要的形成方式。流体不混溶作用、富助熔组分花岗岩浆高度结晶分异和热液交代作用3种富集机制可用于解释伟晶岩型稀有金属矿床的形成。Abstract: The pegmatite deposit is one of the most important types of rare metal deposits in the world, and it is also one of the most popular interests in the international deposit research.Significant advances have been made in the latest decades, including the classification, source of ore-forming fluids and materials, pegmatite diagenesis mode and enrichment mechanism of rare metals.Ore-related pegmatites have closely temporal-spatial relationship with parental magmatism in general.However, some pegmatites do not show this relative genetic relationship.Studies indicate that the ore-forming melts/fluids of rare-metal pegmatite deposits have properties such as low viscosity, rich water, high dispersibility, and rich alkali, leading to extreme enrichment of elements such as P, F, and B in pegmatite, which migrates and enriches together with rare metals in various complexes or compounds.Li-Cs-Ta type (LCT) pegmatites are closely related to S-type granites.The ore-forming materials are mainly originated from marine sediments like black shale, whereas Nb-Y-F type (NYF) pegmatites are generally associated with A-type granites, which are all derived from the same magmatism.Granitic magma fractional crystallisation and partial melting of crustal or mantle-derived rocks are the two significant formation modes of pegmatites.Meanwhile, three enrichment mechanisms, including fluid immiscibility, highly crystalline differentiation of the flux-rich granite slurry and hydrothermal metasomatism, are widely used to interpret the formation of rare metal pegmatite deposits.
-
Key words:
- pegmatite /
- rare metal deposit /
- diagenesis mode /
- enrichment mechanism
-
图 1 部分与Li矿床有关的伟晶岩温度-压力条件(引自文献[16])
Spd.锂辉石;Qtz.石英;Pet.透锂长石;Ecr.锂霞石
Figure 1. Temperature-pressure conditions of Li pegmatite deposits
图 2 与S型花岗岩深成岩体有关的LCT型伟晶岩及矿化分带[46]
Figure 2. Zonation of LCT-type pegmatites and mineralization related to S-type granites
图 3 与母岩体不同关系的伟晶岩形成的地壳剖面对比示意图[14]
Figure 3. Schematic crustal profile illustrating the contrasting controls on the formation of pegmatites in a pluton-related and a pluton-unrelated scenario
图 4 阿尔泰造山带伟晶岩深熔成因模式示意图[49]
Figure 4. Sketch anatexis petrogenesis model of pegmatites in the Altay orogenic belt
图 5 组分[x(H2O)]-温度假二元系的不混溶线中A型和B型熔体包裹体的关系[19]
Figure 5. Relationship of type-A and type-B melt inclusions in a temperature versus H2O concentration diagram in the pseudo-binary silicate melt-H2O system
图 6 伟晶岩成矿流体组成带纯化(CZR)示意图[18]
Figure 6. Sketch of constitutional zone refining of ore-forming fluids in pegmatitic system
表 1 部分伟晶岩型Li和Nb-Ta矿床成矿温度及盐度统计(修改自文献[16, 21])
Table 1. Statistics of metallogenic temperature and salinity of some Li and Nb-Ta pegmatite deposits
矿床 主要矿物 包裹体类型 Th, CO2/℃ Th, TOT/℃ Tm, clath/℃ Tm, ice/℃ w(NaCl)/% 扎乌龙 辉石 富子晶 16.5~29.4 >500 5.3~9.6 0.8~8.5 CO2-NaCl-H2O 16.5~29.4 278~412 3.0~6.5 6.6~11.9 石英 CO2-NaCl-H2O 15.3~28.4 287~419 4.1~7.4 4.4~9.6 NaCl-H2O 203~302 -6.7~-1.6 2.7~13.9 甲基卡
134号脉辉石 富子晶 26~28 500~720 0~10 6.0 CO2-NaCl-H2O 26~28 250~400 0~10 7.0 NaCl-H2O 245~365 石英 CO2-NaCl-H2O 19.3~28.0 246~415 3.5~8.2 3.7~10.8 NaCl-H2O 190~376 绿柱石 富子晶 460~480 可可托海 石英 熔体 720~830 CO2-NaCl-H2O 310~360 NaCl-H2O 145~255 Tanco 斜长石 富子晶 370~470 石英 CO2-NaCl-H2O 260~330 仁里 文象结构带 NaCl-H2O 186~224 -0.8~-3.8 1.4~6.2 微斜长石-钠长石带 NaCl-H2O 174~215 -2.7~-4.0 4.5~6.9 白云母-钠长石带 NaCl-H2O 190~253 -2.0~-4.0 1.7~6.7 锰铝榴石-钠长石带 260~304 -3.8~-6.2 6.2~9.5 锂云母-石英 259~301 -5.0~-7.61 7.9~11.2 注:Th, CO2为CO2相的均一温度;Th, TOT为流体包裹体的总均一温度;Tm, clath为CO2-H2O包裹体的最终熔融温度;Tm, ice为冰的最终熔融温度 -
[1] 李建康, 李鹏, 王登红, 等. 中国铌钽矿成矿规律[J]. 科学通报, 2019, 64(15): 1545-1566. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201915002.htm [2] P, London D, Novak M. Granitic pegmatites as reflections of their sources[J]. Elements, 2012, 8(4): 289-294. doi: 10.2113/gselements.8.4.289 [3] London D, Morgan G. The pegmatite puzzle[J]. Elements, 2012, 8(4): 263-268. doi: 10.2113/gselements.8.4.263 [4] Thomas R, Davidson P, Schmidt C. Extreme alkali bicarbonate-and carbonate-rich fluid inclusions in granite pegmatite from the Precambrian Rønne granite, Bornholm Island, Denmark[J]. Contributions to Mineralogy and Petrology, 2011, 161(2): 315-329. doi: 10.1007/s00410-010-0533-z [5] London D. Pegmatites[M]. Canada, Quebec: The Canadian Mineralogist, Special Publication, 2008. [6] Breiter K, Badanina E, Durišová J, et al. Chemistry of quartz: A new insight into the origin of the Orlovka Ta-Li deposit, Eastern Transbaikalia, Russia[J]. Lithos, 2019, 348/349: 105206. doi: 10.1016/j.lithos.2019.105206 [7] Galeschuk C R, Vanstone P J. Exploration techniques for rare-element pegmatite in the Bird River Greenstone Belt, Southeastern Manitoba[C]//Anon. Decennial Mineral Exploration Conferences. Toronto: [s. n. ], 2007. [8] Müller A, Ihlen P, Bingen B, et al. The Sveconorwegian Pegmatite Province: 5000 pegmatite and no parental granites[C]//Anon. 7th International Symposium on Granitic Pegmatites, PEG 2015 Ksiqz, Poland: Book of Abstracts, 2015: 58-59. [9] Zagorsky V Y, Vladimirov A G, Makagon V M, et al. Large fields of spodumene pegmatites in the settings of rifting and post-collisional shear-pull-apart dislocations of continental lithosphere[J]. Russian Geology and Geophysics, 2014, 55(2): 237-251. doi: 10.1016/j.rgg.2014.01.008 [10] Lü Z H, Zhang H, Tang Y, et al. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope[J]. Ore Geology Reviews, 2018, 95: 161-181. doi: 10.1016/j.oregeorev.2018.02.022 [11] Partington G A, Mcnaughton N J, Williams I S. A review of the geology, mineralization, and geochronology of the Greenbushes Pegmatite, Western Australia[J]. Economic Geology, 1995, 90(3): 616-635. doi: 10.2113/gsecongeo.90.3.616 [12] P, Ercit T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43(6): 2005-2026. doi: 10.2113/gscanmin.43.6.2005 [13] Dill H G. Pegmatites and aplites: Their genetic and applied ore geology[J]. Ore Geology Reviews, 2015, 69: 417-561. doi: 10.1016/j.oregeorev.2015.02.022 [14] Müller A, Romer R L, Pedersen R. The Sveconorwegian pegmatite province-thousands of pegmatites without Parental Granites[J]. The Canadian Mineralogist, 2017, 55: 283-315. doi: 10.3749/canmin.1600075 [15] Müller A, Simmons W, Beurlen H, et al. A proposed new mineralogical classification system for granitic pegmatites: Part Ⅰ. history and the need for a new classification[J]. The Canadian Mineralogist, 2018, 56: 1-25. http://www.researchgate.net/publication/329456460_A_Proposed_New_Mineralogical_Classification_System_For_Granitic_Pegmatites_-_Part_I_History_and_the_Need_For_a_New_Classification [16] Xiong X, Li J, Wang D, et al. Fluid characteristics and evolution of the Zhawulong granitic pegmatite lithium deposit in the Ganzi-Songpan region, Southwestern China[J]. Acta Geologica Sinica: English Edition, 2019, 93(4): 943-954. doi: 10.1111/1755-6724.13851 [17] Li J, Chou I M. Homogenization experiments of crystal-rich inclusions in spodumene from Jiajika Lithium Deposit, China, under elevated external pressures in a Hydrothermal Diamond-Anvil Cell[J]. Geofluids, 2017(3/4): 1-12. http://www.researchgate.net/publication/321066859_Homogenization_Experiments_of_Crystal-Rich_Inclusions_in_Spodumene_from_Jiajika_Lithium_Deposit_China_under_Elevated_External_Pressures_in_a_Hydrothermal_Diamond-Anvil_Cell [18] London D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 2018, 101: 349-383. doi: 10.1016/j.oregeorev.2018.04.020 [19] Thomas R, Davidson P. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state-consequences for the formation of pegmatites and ore deposits[J]. Ore Geology Reviews, 2016, 72: 1088-1101. doi: 10.1016/j.oregeorev.2015.10.004 [20] 卢焕章. 岩浆-流体过渡和阿尔泰三号伟晶岩脉之成因[J]. 矿物学报, 1996, 16(1): 1-7. doi: 10.3321/j.issn:1000-4734.1996.01.001 [21] Li J, Liu C, Liu X, et al. Tantalum and niobium mineralization from F- and Cl-rich fluid in the lepidolite-rich pegmatite from the Renli deposit in northern Hunan, China: Constraints of fluid inclusions and lepidolite crystallization experiments[J]. Ore Geology Reviews, 2019, 115: 103187. doi: 10.1016/j.oregeorev.2019.103187 [22] Roedder E. Fluid inclusion evidence for immiscibility in magmatic differentiation[J]. Geochimica et Cosmochimica Acta, 1992, 56(1): 5-20. doi: 10.1016/0016-7037(92)90113-W [23] Li S H, Li J K, Zhang D H, et al. The evolution of ore-forming fluid andits constrain to the ore-forming process in Limu Ta-Nb-Sn polymetallic ore deposit, Guangxi, China[J]. Acta Petrologica Sinica, 2015, 31: 954-966. http://www.researchgate.net/publication/281993658_The_evolution_of_ore-forming_fluid_and_its_constrain_to_the_ore-forming_process_in_Limu_Ta-Nb-Sn_polymetallic_ore_deposit_Guangxi_China [24] 熊欣, 李建康, 王登红, 等. 川西甲基卡花岗伟晶岩型锂矿床中熔体、流体包裹体固相物质研究[J]. 岩石矿物学杂志, 2019, 38(2): 241-253. doi: 10.3969/j.issn.1000-6524.2019.02.008 [25] Sowerby J R, Keppler H. The effect of fluorine, boron and excess sodium on the critical curve in the albite-H2O system[J]. Contributions to Mineralogy & Petrology, 2002, 143(1): 32-37. doi: 10.1007/s00410-001-0334-5 [26] 李建康, 王登红, 张德会, 等. 川西甲基卡伟晶岩型矿床中含硅酸盐子矿物包裹体的发现及其意义[J]. 矿床地质, 2006, 25(增刊1) : 131-134. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2006S1038.htm [27] 李建康, 王登红, 张德会, 等. 四川甲基卡伟晶岩型锂多金属矿床成矿流体来源研究[J]. 岩石矿物学杂志, 2006, 25(1): 45-52. doi: 10.3969/j.issn.1000-6524.2006.01.006 [28] Nabelek P I. Fluid inclusion examination of the transition from magmatic to hydrothermal conditions in pegmatites from San Diego County, California[J]. American Mineralogist, 2016, 101(8): 1906-1915. doi: 10.2138/am-2016-5559 [29] Harlaux M, Mercadier J, Bonzi W M, et al. Geochemical signature of magmatic-hydrothermal fluids exsolved from the beauvoir rare-metal granite (massif central, france): Insights from la-icp-ms analysis of primary fluid inclusions[J]. Geofluids, 2017(4): 1-25. http://www.researchgate.net/publication/322082498_Geochemical_Signature_of_Magmatic-Hydrothermal_Fluids_Exsolved_from_the_Beauvoir_Rare-Metal_Granite_Massif_Central_France_Insights_from_LA-ICPMS_Analysis_of_Primary_Fluid_Inclusions [30] Audetat A. The metal content of magmatic-hydrothermal fluids and its relationship to mineralization potential[J]. Economic Geology, 2019, 114(6): 1033-1056. doi: 10.5382/econgeo.4673 [31] 李建康, 张德会, 王登红, 等. 富氟花岗岩浆液态不混溶作用及其成岩成矿效应[J]. 地质论评, 2008, 54(2): 175-183. doi: 10.3321/j.issn:0371-5736.2008.02.004 [32] Shaw R A, Goodenough K M, Roberts N M W, et al. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: A case study from the Lewisian Gneiss Complex of north-west Scotland[J]. Precambrian Research, 2016, 281: 338-362. doi: 10.1016/j.precamres.2016.06.008 [33] Li P, Li J, Liu X, et al. Geochronology and source of the rare-metal pegmatite in the Mufushan area of the Jiangnan orogenic belt: A case study of the giant Renli Nb-Ta deposit in Hunan, China[J]. Ore Geology Reviews, 2020, 116: 103237. doi: 10.1016/j.oregeorev.2019.103237 [34] P. Rare-element granitic pegmatites: Part Ⅱ. Regional to global environments and petrogenesis[J]. Geoscience Canada, 1991, 18(2): 68-81. http://www.researchgate.net/publication/285711507_rare-element_granitic_pegmatites_part_ii_regional_to_global_environments_and_petrogenesis [35] Chappell B W, White A J R. Two contrasting granite types: 25 years later[J]. Australian Journal of Earth Sciences, 2001, 48(4): 489-499. doi: 10.1046/j.1440-0952.2001.00882.x [36] James R H, Palmer M R. Marine geochemical cycles of the alkali elements and boron: The role of sediments[J]. Geochimica et Cosmochimica Acta, 2000, 64(18): 3111-3122. doi: 10.1016/S0016-7037(00)00418-X [37] Dutrow B L, Henry D J. Tourmaline: A geologic DVD[J]. Elements, 2011, 7(5): 301-306. doi: 10.2113/gselements.7.5.301 [38] Coveney J R. Metalliferous shales and the role of organic matter, with examples from China, Poland, and the United States[J]. Reviews in Economic Geology, 2000, 9: 251-280. http://www.researchgate.net/publication/283994032_Metalliferous_shales_and_the_role_of_organic_matter_with_examples_from_China_Poland_and_the_United_States [39] Dekov V, Damyanov Z. Native silver-copper alloy in metalliferous sediments from the East Pacific Rise axial zone (20 degrees 30′-22 degrees 10′S)[J]. Oceanologica Acta, 1997, 20(3): 501-512. http://www.mendeley.com/research/native-silvercopper-alloy-metalliferous-sediments-east-pacific-rise-axial-zone-20-degrees-3022-degre/ [40] Yim W W S. Tin placer deposits on continental shelves[M]//Cronan D S. Handbook of marine mineral deposits. Boca Raton, FL, United States (USA): CRC Press, 2000: 27-66. [41] Schmidt K, Bau M, Hein J R, et al. Fractionation of the geochemical twins Zr-Hf and Nb-Ta during scavenging from seawater by hydrogenetic ferromanganese crusts[J]. Geochimica et Cosmochimica Acta, 2014, 140: 468-487. doi: 10.1016/j.gca.2014.05.036 [42] Christiansen E H, Mccurry M. Contrasting origins of Cenozoic silicic volcanic rocks from the western Cordillera of the United States[J]. Bulletin of Volcanology, 2008, 70(3): 251-267. doi: 10.1007/s00445-007-0138-1 [43] Pirajno F. Intracontinental anorogenic alkaline magmatism and carbonatites, associated mineral systems and the mantle plume connection[J]. Gondwana Research, 2015, 27(3): 1181-1216. doi: 10.1016/j.gr.2014.09.008 [44] Bebout G E, Bebout A E, Graham C M. Cycling of B, Li, and LILE (K, Cs, Rb, Ba, Sr) into subduction zones: SIMS evidence from micas in high-P/T metasedimentary rocks[J]. Chemical Geology, 2007, 239(3): 289-304. http://www.sciencedirect.com/science/article/pii/S0009254106004669 [45] London D. Granitic pegmatites: an assessment of current concepts and directions for the future[J]. Lithos, 2005, 80(1): 281-303. http://www.sciencedirect.com/science/article/pii/S0024493704002944 [46] Selway J, Breaks F, Tindle A. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits[J]. Exploration and Mining Geology, 2005, 14(1/4): 1-30. http://www.researchgate.net/publication/42797143_A_review_of_rare-element_Li-Cs-Ta_pegmatite_exploration_techniques_for_the_Superior_Province_Canada_and_large_worldwide_tantalum_deposits [47] 李鹏, 李建康, 裴荣富, 等. 幕阜山复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰: 年代学依据[J]. 地球科学, 2017, 42(10): 1684-1696. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201710004.htm [48] 王联魁, 王慧芬, 黄智龙. Li-F花岗岩液态分离的微量元素地球化学标志[J]. 岩石学报, 2000, 16(2): 145-152. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002000.htm [49] 张辉, 吕正航, 唐勇. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 2019, 38(4): 792-814. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904008.htm [50] 王吴梦雨, 饶灿, 董传万, 等. 浙江临安石室寺NYF型伟晶岩中稀有稀土金属的矿物学行为与成矿过程[J]. 高校地质学报, 2019, 25(6): 914-931. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201906011.htm [51] 李兆麟, 杨荣勇, 李文, 等. 中国不同成因伟晶岩形成的物理化学条件[J]. 地质科技情报, 1998, 17(增刊1): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ8S1.004.htm [52] 杨世文, 楼法生, 张芳荣, 等. 赣南晚侏罗世铝质A型花岗岩带及其意义[J]. 地质科技情报, 2019, 38(3): 12-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903002.htm [53] Simmons W B S, Webber K L. Pegmatite genesis: State of the art[J]. European Journal of Mineralogy, 2008, 20(4): 421-438. doi: 10.1127/0935-1221/2008/0020-1833 [54] Müller A H, Ihlen P M, Snook B, et al. The chemistry of quartz in granitic pegmatites of southern Norway: Petrogenetic and economic implications[J]. Economic Geology, 2015, 110(7): 1737-1757. doi: 10.2113/econgeo.110.7.1737 [55] Simmons W, Falster A, Webber K, et al. Bulk composition of Mt. Mica Pegmatite, Maine, USA: Implications for the origin of an LCT type pegmatite by anatexis[J]. Canadian Mineralogist, 2016, 54(4): 1053-1070. doi: 10.3749/canmin.1600017 [56] Dill H G. The Hagendorf-pleystein province: The center of pegmatites in an Ensialic Orogen[M]. [S. l. ]: Springer, 2015: 1-465. [57] Dill H G. The CMS classification scheme (chemical composition-mineral assemblage-structural geology)-linking geology to mineralogy of pegmatitic and aplitic rocks[J]. Neues Jahrbuch Fur Mineralogie-Abhandlungen, 2016, 193(3): 231-263. doi: 10.1127/njma/2016/0304 [58] Breaks F W, Bond W D, Stone D. Preliminary geological synthesis of the English River sub-province: Northwestern Ontario and its bearing upon mineral exploration[M]. [S. l. ]: Ontario Geological Survey, 1978: 1-55. [59] Martin R, de Vito C. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting[J]. Canadian Mineralogist, 2005, 43(6): 2027-2048. doi: 10.2113/gscanmin.43.6.2027 [60] Thomas R, Webster J D, Rhede D, et al. The transition from peraluminous to peralkaline granitic melts: Evidence from melt inclusions and accessory minerals[J]. Lithos, 2006, 91(1): 137-149. http://www.sciencedirect.com/science/article/pii/S0024493706000764 [61] Thomas R, Davidson P, Beurlen H. The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research[J]. Mineralogy and Petrology, 2012, 106(1/2): 55-73. doi: 10.1007/s00710-012-0212-z [62] 赵博, 鲍波, 于蕾, 等. 再论富F熔体-溶液流体体系的成矿效应[J]. 地质科技情报, 2016, 33(4): 123-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404020.htm [63] Roda Robles E, Pesquera Perez A, Velasco Roldan F, et al. The granitic pegmatites of the Fregeneda area (Salamanca, Spain): Characteristics and petrogenesis[J]. Mineralogical Magazine, 1999, 63(4): 535-558. doi: 10.1180/002646199548709 [64] Webster J, Thomas R, Förster H J, et al. Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany[J]. Mineralium Deposita, 2004, 39(4): 452-472. doi: 10.1007/s00126-004-0423-2 [65] Cameron E N, Jahns R H, Mcnair A H, et al. Internal structure of granitic pegmatites[J]. Geologiska Foreningens I Stockholm Forhandlingar, 1950, 72(3): 361-362. doi: 10.1080/11035895009451857 [66] Barnes E M, Weis D, Groat L A. Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada[J]. Lithos, 2012, 132/133: 21-36. doi: 10.1016/j.lithos.2011.11.014 [67] Garate-Olave I, Müller A, Roda-Robles E, et al. Extreme fractionation in a granite-pegmatite system documented by quartz chemistry: The case study of Tres Arroyos (Central Iberian Zone, Spain)[J]. Lithos, 2017, 286/287: 162-174. doi: 10.1016/j.lithos.2017.06.009 [68] London D, Morgan G B V. Experimental crystallization of the Macusani Obsidian, with Applications to Lithium-rich Granitic Pegmatites[J]. Journal of Petrology, 2017, 58(5): 1005-1030. doi: 10.1093/petrology/egx044 [69] 邹天人, 徐建国. 论花岗伟晶岩的成因和类型的划分[J]. 地球化学, 1975(3): 161-174. doi: 10.3321/j.issn:0379-1726.1975.03.001 [70] Wang R C, Hu H, Zhang A C, et al. Cs-dominant polylithionite in the Koktokay #3 pegmatite, Altai, NW China: In situ micro-characterization and implication for the storage of radioactive cesium[J]. Contributions to Mineralogy and Petrology, 2007, 153(3): 355-367. doi: 10.1007/s00410-006-0151-y [71] Rickers K, Thomas R, Heinrich W. The behavior of trace elements during the chemical evolution of the H2O-, B-, and F-rich granite-pegmatite-hydrothermal system at Ehrenfriedersdorf, Germany: A SXRF study of melt and fluid inclusions[J]. Mineralium Deposita, 2006, 41(3): 229-245. doi: 10.1007/s00126-006-0057-7 [72] Siegel K, Wagner T, Trumbull R B, et al. Stable isotope (B, H, O) and mineral-chemistry constraints on the magmatic to hydrothermal evolution of the Varuträsk rare-element pegmatite (Northern Sweden)[J]. Chemical Geology, 2016, 421: 1-16. doi: 10.1016/j.chemgeo.2015.11.025 [73] 唐宏, 张辉. 可可托海3号伟晶岩脉石英中微量元素组成特征与岩浆-热液演化[J]. 矿物学报, 2018, 38(1): 15-24. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201801002.htm [74] 王臻, 陈振宇, 李建康, 等. 云母矿物对仁里稀有金属伟晶岩矿床岩浆-热液演化过程的指示[J]. 矿床地质, 2019, 38(5): 1039-1052. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905006.htm [75] 杨晗, 陈振宇, 李建康, 等. 湘东北仁里-传梓源5号伟晶岩脉云母和长石成分的演化与成矿作用的关系[J]. 矿床地质, 2019, 38(4): 851-866. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904011.htm [76] Linnen R L. The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li + F: Constraints for mineralization in rare metal granites and pegmatites[J]. Economic Geology, 1998, 93(7): 1013-1025. doi: 10.2113/gsecongeo.93.7.1013 [77] 曹振辉, 崔恒星, 崔继强, 等. 江西黄山铌(钽)矿床中铌钽矿物的矿物学特征及地质意义[J]. 地质科技情报, 2019, 38(3): 52-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903005.htm [78] Fiege A, Kirchner C, Holtz F, et al. Influence of fluorine on the solubility of manganotantalite (MnTa2O6) and manganocolumbite (MnNb2O6) in granitic melts: An experimental study[J]. Lithos, 2011, 122(3/4): 165-174. http://www.sciencedirect.com/science/article/pii/S0024493710003555 [79] Audétat A, Günther D, Heinrich C A. Formation of a magmatic-hydrothermal ore deposit: Insights with LA-ICP-MS analysis of fluid inclusions[J]. Science, 1998, 279: 2091-2094. doi: 10.1126/science.279.5359.2091 [80] Ulrich T, Günther D, Heinrich C A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J]. Nature, 1999, 399: 676-679. doi: 10.1038/21406