留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

琼东南盆地陵水区中央峡谷水道沉积数值模拟

汪新光 张辉 陈之贺 田冬梅 李文睿 张冬月 曹立成

汪新光, 张辉, 陈之贺, 田冬梅, 李文睿, 张冬月, 曹立成. 琼东南盆地陵水区中央峡谷水道沉积数值模拟[J]. 地质科技通报, 2021, 40(5): 42-53. doi: 10.19509/j.cnki.dzkq.2021.0026
引用本文: 汪新光, 张辉, 陈之贺, 田冬梅, 李文睿, 张冬月, 曹立成. 琼东南盆地陵水区中央峡谷水道沉积数值模拟[J]. 地质科技通报, 2021, 40(5): 42-53. doi: 10.19509/j.cnki.dzkq.2021.0026
Wang Xinguang, Zhang Hui, Chen Zhihe, Tian Dongmei, Li Wenrui, Zhang Dongyue, Cao Licheng. Numerical simulation of sedimentation in the Central Canyon of Lingshui area, Qiongdongnan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 42-53. doi: 10.19509/j.cnki.dzkq.2021.0026
Citation: Wang Xinguang, Zhang Hui, Chen Zhihe, Tian Dongmei, Li Wenrui, Zhang Dongyue, Cao Licheng. Numerical simulation of sedimentation in the Central Canyon of Lingshui area, Qiongdongnan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 42-53. doi: 10.19509/j.cnki.dzkq.2021.0026

琼东南盆地陵水区中央峡谷水道沉积数值模拟

doi: 10.19509/j.cnki.dzkq.2021.0026
基金项目: 

青岛海洋科学与技术试点国家实验室开放基金资助项目 MMRKF201801

中海油有限公司综合科研项目 YXKY-2019-ZJ-02

详细信息
    作者简介:

    汪新光(1981-), 男, 高级工程师, 主要从事海洋油气田开发地质方面的研究工作。E-mail: wangxg3@cnooc.com.cn

    通讯作者:

    曹立成(1989-), 男, 副教授, 主要从事海洋地质与沉积地球化学的研究与教学工作。E-mail: lichengcao@cug.edu.cn

  • 中图分类号: P618.130.2

Numerical simulation of sedimentation in the Central Canyon of Lingshui area, Qiongdongnan Basin

  • 摘要: 深水峡谷是当今海洋油气勘探领域的研究热点。南海西北部琼东南盆地的中央峡谷已部署了多口深水钻井来勘探沉积充填的岩性油气藏,然而,由于这些探井数量相对有限、井间距离大以及地震资料分辨率较低,峡谷内砂体的叠复关系、边界接触关系以及沉积演化等问题尚不清楚,严重制约着储层空间分布与储层物性的精细刻画。对琼东南盆地陵水区中央峡谷开展了沉积数值模拟研究,根据研究区具体地质背景建立了地质模型和数学模型,通过流体动力学软件ANSYS FLUENT正演模拟了多个沉积期次和多套砂组在不同初始条件(如物源和入流速度)下的浊流沉积几何形态,包括砂体平面分布特征和隔夹层分布特征。模拟结果表明:峡谷平直段内,浊流受底床摩擦力的持续影响,流速降低且湍流强度减弱,使得较粗颗粒可沉降于底床,细颗粒可随浊流头部涡流悬浮;峡谷狭窄段内,浊流头部的湍流较强,侵蚀峡谷壁并使峡谷走向发生偏移,悬浮颗粒受离心力作用形成溢岸沉积;峡谷内砂体展布具有垂向分异性,砂体内部泥岩以夹层为主,厚度一般较小且横向连续性差。与现有地震、钻井资料的对比分析显示本次数值模拟结果具有有效性。本研究成果揭示了中央峡谷不同沉积期次和不同砂组的沉积水动力学过程,进而预测了砂体的空间展布特征,为储层物性预测提供了坚实支撑。

     

  • 图 1  琼东南盆地构造单元、中央峡谷展布以及本次研究涉及的钻井分布

    Figure 1.  Tectonic units of the Qiongdongnan Basin and distributions of the Central Canyon and boreholes used in this study

    图 2  琼东南盆地新近系沉积序列

    Figure 2.  Neogene sedimentary sequences of the Qiongdongnan Basin

    图 3  琼东南盆地中央峡谷地层格架及本次模拟的6个沉积期次(剖面位置如图 1所示)

    Figure 3.  Stratigraphic framework of the Central Canyon, Qiongdongnan Basin, showing the six sedimentary stages modeled in this study

    图 4  陵水区中央峡谷各沉积期次地貌图

    Figure 4.  Geomorphologic maps for different sedimentary stages of the Lingshui area of the Central Canyon

    图 5  沉积水动力模拟研究流程图

    Figure 5.  Flowchart of the simulation of sedimentary hydrodynamics

    图 6  陵水区中央峡谷各沉积期次模拟砂岩体积分数平面分布

    Figure 6.  Plane distributions of relative percentage of modelled sandstone bodies for different sedimentary stages of the Lingshui area of the Central Canyon

    图 7  陵水区中央峡谷各沉积期次模拟流体压力平面分布

    Figure 7.  Plane distributions of modelled fluid pressure for different sedimentary stages of the Lingshui area of the Central Canyon

    图 8  W8井剖面砂组垂向分布特征(剖面位置如图 1所示)

    Figure 8.  Vertical distribution pattern of sandstone bodies in the profile of Borehole W8

    图 9  W10-W11连井剖面砂组垂向分布特征(剖面位置如图 1所示)

    Figure 9.  Vertical distribution pattern of sandstone bodies in the profile of Boreholes W10-W11

    表  1  沉积水动力学模拟主要参数

    Table  1.   Main parameters for the simulation of sedimentary hydrodynamics

    参数 期次1 期次2 期次3 期次4 期次5 期次6
    模型长度/m 155 152 152 152 152 152
    模型宽度/m 55 50 60 50 50 50
    网格最大歪斜度 0.941 01 0.908 78 0.733 68 0.672 31 0.691 16 0.528 31
    砂泥相进口速度/(m·s-1) ≈1.5 ≈1 ≈3.5 ≈5 ≈3 ≈6
    砂相颗粒直径/mm 0.047 0.070 0.042 0.050 0.043 0.040
    泥相颗粒直径/mm 0.01 0.01 0.01 0.01 0.01 0.01
    砂泥比 11%∶9% 11%∶9% 14.6%∶5.4% 14%∶6% 4%∶16% 8%∶12%
    海水黏度/(kg·m-1·s-1) 0.001
    砂相颗粒黏度/(kg·m-1·s-1) <0.01
    泥相颗粒黏度/(kg·m-1·s-1) 0.01
    海水密度/(kg·m-3) 998.2
    砂相颗粒密度/(kg·m-3) 2 680
    泥相颗粒密度/(kg·m-3) 2 720
    底面粗糙系数 0.8
    底面粗糙高度/mm 与砂相颗粒粒径相同
    海水热导率/(W·m-1·K-1) 0.6
    海水相对分子质量/(kg·kg-1·mol-1) 18
    颗粒热导率/(W·m-1·K-1) 0.024 2
    L-J特征长度/(10-8 m) 3.711
    L-J能量参数/K 78.6
    注:①砂相颗粒粒径为一个沉积期次内岩心、岩屑所测粒度值的加权平均值;②浊流颗粒体积分数一般小于20%;这里将测井资料统计所得砂泥占比进行分配,取20%作为砂泥体积分数之和的上限
    下载: 导出CSV
  • [1] Carter R. The nature and evolution of deep-sea channel systems[J]. Basin Research, 1988, 1(1): 41-54. doi: 10.1111/j.1365-2117.1988.tb00004.x
    [2] Clark J D, Pickering K T. Architectural elements, and growth patterns of submarine channels: Application to hydrocarbon exploration[J]. AAPG Bulletin, 1996, 80(2): 194-220. http://www.researchgate.net/publication/255037078_Architectural_elements_and_growth_patterns_of_submarine_channels_Application_to_hydrocarbon_exploration
    [3] Posamentier H W, Kolla V. Seismic geomorphology, and stratigraphy of depositional elements in deep-water settings[J]. Journal of Sedimentary Research, 2003, 73(3): 367-388. doi: 10.1306/111302730367
    [4] Deptuck M E, Sylvester Z, Pirmez C, et al. Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western Niger Delta slope[J]. Marine and Petroleum Geology, 2007, 24(6/9): 406-433. http://www.sciencedirect.com/science/article/pii/s0264817207000372
    [5] Mayall M, Jones E, Casey M. Turbidite channel reservoirs: Key elements in facies prediction and effective development[J]. Marine and Petroleum Geology, 2006, 23(8): 821-841. doi: 10.1016/j.marpetgeo.2006.08.001
    [6] 周蒂, 孙珍, 陈汉宗. 世界著名深水油气盆地的构造特征及对我国南海北部深水油气勘探的启示[J]. 地球科学进展, 2007, 22(6): 561-572. doi: 10.3321/j.issn:1001-8166.2007.06.002

    Zhou D, Sun Z, Chen H Z, Tectonic features of world's major deep-water oil/gas fields and their enlightenment to deep-water exploration in northern South China Sea[J]. Advances in Earth Science, 2007, 22(6): 561-572(in Chinese with English abstract). doi: 10.3321/j.issn:1001-8166.2007.06.002
    [7] Antobreh A A, Krastel S. Morphology, seismic characteristics and development of Cap Timiris Canyon, offshore Mauritania: A newly discovered canyon preserved-off a major arid climatic region[J]. Marine and Petroleum Geology, 2006, 23(1): 37-59. doi: 10.1016/j.marpetgeo.2005.06.003
    [8] Piper D J, Shaw J, Skene K I. Stratigraphic and sedimentological evidence for late Wisconsinan sub-glacial outburst floods to Laurentian Fan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246(1): 101-119. doi: 10.1016/j.palaeo.2006.10.029
    [9] Yuan S Q, Lue F L, Wu S G, et al. Seismic stratigraphy of the Qiongdongnan deep sea channel system, northwest South China Sea[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(2): 250-259. doi: 10.1007/s00343-009-9177-0
    [10] 林畅松, 刘景彦, 蔡世祥, 等. 莺-琼盆地大型下切谷和海底重力流体系的沉积构成和发育背景[J]. 科学通报, 2001, 46(1): 69-72. doi: 10.3321/j.issn:0023-074X.2001.01.018

    Lin C S, Liu J Y, Cai S X, et al. Depositional architecture and developing settings of large-scale incised valley and submarine gravity flow systems in the Yinggehai and Qiongdongnan Basins, South China Sea[J]. Chinese Science Bulletin, 2001, 46(1): 69-72(in Chinese with English abstract). doi: 10.3321/j.issn:0023-074X.2001.01.018
    [11] 苏明, 张成, 解习农, 等. 深水峡谷体系控制因素分析: 以南海北部琼东南盆地中央峡谷体系为例[J]. 中国科学: 地球科学, 2014, 44(8): 1807-1820. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201408019.htm

    Su M, Zhang C, Xie X N, et al. Controlling factors on the submarine canyon system: A case study of the central canyon system in the Qiongdongnan Basin, northern South China Sea[J]. Science China: Earth Sciences, 2014, 44(8): 1807-1820(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201408019.htm
    [12] 许怀智, 蔡东升, 孙志鹏, 等. 琼东南盆地中央峡谷沉积充填特征及油气地质意义[J]. 地质学报, 2012, 86(4): 641-650. doi: 10.3969/j.issn.0001-5717.2012.04.010

    Xu H Z, Cai D S, Sun Z P, et al. Filling characters of central submarine canyon of Qiongdongnan Basin and its significance of petroleum geology[J]. Acta Geologica Sinica, 2012, 86(4): 641-650(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2012.04.010
    [13] 张道军, 王亚辉, 王振峰, 等. 琼东南盆地深水区中央峡谷沉积微相特征[J]. 沉积学报, 2013, 31(6): 1114-1121. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201306019.htm

    Zhang D J, Wang Y H, Wang Z F, et al. characteristics of sedimentary microfacies in the central canyon within the deep-water area, Qiongdongnan Basin[J]. Acta Sedimentologica Sinica, 2013, 31(6): 1114-1121(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201306019.htm
    [14] Gong C, Wang Y, Zhu W, et al. The central submarine canyon in the Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes[J]. Marine and Petroleum Geology, 2011, 28(9): 1690-1702. doi: 10.1016/j.marpetgeo.2011.06.005
    [15] 李华, 何幼斌. 深水重力流水道沉积研究进展[J]. 古地理学报, 2020, 22(1): 161-174. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202001010.htm

    Li H, He Y B. Research progress on deepwater gravity flow channel deposit[J]. Journal of Paleogeography, 2020, 22(1): 161-174(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202001010.htm
    [16] 何家雄, 刘海龄, 姚永坚, 等. 南海北部边缘盆地油气地质及资源前景[M]. 北京: 石油工业出版社, 2008.

    He J X, Liu H L, Yao Y J, et al. Petroleum geology and resource prospects in the northern marginal basin of the South China Sea[M]. Beijing: Petroleum Industry Press, 2008(in Chinese).
    [17] Wang P, Li Q. The South China Sea: Paleoceanography and sedimentology[M]. Netherlands: Springer, 2009.
    [18] Su M, Xie X N, Xie Y, et al. The segmentations and the significances of the central canyon system in the Qiongdongnan Basin, northern South China Sea[J]. Journal of Asian Earth Sciences, 2014, 79: 552-563. doi: 10.1016/j.jseaes.2012.12.038
    [19] 苏明, 解习农, 王振峰, 等. 南海北部琼东南盆地中央峡谷体系沉积演化[J]. 石油学报, 2013, 34(3): 467-478. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201303008.htm

    Su M, Xie X N, Wang Z F, et al. Sedimentary evolution of the central canyon system in Qiongdongnan Basin, northern South China Sea[J]. Acta Petrolei Sinica, 2013, 34(3): 467-478(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201303008.htm
    [20] Cao L C, Jiang T, Wang Z F, et al. Provenance of Upper Miocene sediments in the Yinggehai and Qiongdongnan Basins, northwestern South China Sea: Evidence from REE, heavy minerals and zircon U-Pb ages[J]. Marine Geology, 2015, 361: 136-146. doi: 10.1016/j.margeo.2015.01.007
    [21] 梁超. 琼东南盆地中央峡谷乐东-宝岛段充填结构及储层差异性[D]. 武汉: 中国地质大学(武汉), 2020.

    Liang C. Depositional architecture and reservoir differences in the Ledong-Baodao segments of the central canyon in the Qiongdongnan Basin[D]. Wuhan: China University of Geosciences (Wuhan), 2020(in Chinese with English abstract).
    [22] 王杨君, 尹太举, 邓智浩, 等. 水动力数值模拟的河控三角洲分支河道演化研究[J]. 地质科技情报, 2016, 35(1): 44-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201601007.htm

    Wang Y J, Yin T J, Deng Z H, et al. Terminal distributary channels in fluvial-dominated delta systems from numerical simulation of hydrodynamics[J]. Geological Science and Technology Information, 2016, 35(1): 44-52(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201601007.htm
    [23] 朱红钧. ANSYS 15.0几何建模与网格划分实战指南[M]. 北京: 人民邮电出版社, 2014.

    Zhu H J. ANSYS 15.0 geometry modeling and meshing guide[M]. Beijing: Posts and Telecommunications Press, 2014(in Chinese).
    [24] Anderson J D, Degrez G, Dick E, et al. Computational fluid dynamics: An introduction[M]. New York: Springer Science & Business Media, 2013.
    [25] 崔书岳, 康志江, 邸元. 基于多相流模型的缝洞型油藏数值模拟软件研制与应用[J]. 地质科技情报, 2019, 38(5): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905010.htm

    Cui S Y, Kang Z J, Di Y. Development and application of numerical simulation software platform for fractured-cave reservoir based on multiphase flow model[J]. Geological Science and Technology Information, 2019, 38(5): 97-104(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905010.htm
    [26] 甘泉. 远源细粒辫状河心滩坝演化与河流分叉的交互沉积过程: 现代沉积启示与数值模拟分析[J]. 地质科技通报, 2021, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202101002.htm

    Gan Q. Interaction and sedimentary process between the evolution of the bar and bifurcation of the river in the far-source fine-grained braided river: Numerical simulation analysis inspired by modern deposition[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 14-26(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202101002.htm
    [27] 姜涛, 解习农, 汤苏林. 浊流形成条件的水动力学模拟及其在储层预测方面的作用[J]. 地质科技情报, 2005, 24(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200502001.htm

    Jiang T, Xie X N, Tang S L. Hydrodynamic simulation of turbidity and its application for reservoir prediction[J]. Geological Science and Technology Information, 2005, 24(2): 1-6(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200502001.htm
    [28] 唐家鹏. ANSYS FLUENT 16.0超级学习手册[M]. 北京: 人民邮电出版社, 2016.

    Tang J P. ANSYS FLUENT 16.0 super learning manual[M]. Beijing: Posts and Telecommunications Press, 2016(in Chinese).
    [29] Huang H Q, Imran J, Pirmez C. Numerical model of turbidity currents with a deforming bottom boundary[J]. Journal of Hydraulic Engineering, 2005, 131(4): 283-293. doi: 10.1061/(ASCE)0733-9429(2005)131:4(283)
    [30] 王振峰. 深水重要油气储层: 琼东南盆地中央峡谷体系[J]. 沉积学报, 2012, 30(4): 646-653. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201204004.htm

    Wang Z F. Important deepwater hydrocarbon reservoirs: The central canyon system in the Qiongdongnan Basin[J]. Acta Sedimentologica Sinica, 2012, 30(4): 646-653(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201204004.htm
    [31] 姜涛, 解习农, 汤苏林, 等. 浊流成因海底沉积波形成机理及其数值模拟[J]. 科学通报, 2007, 52(16): 1945-1950. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200716017.htm

    Jiang T, Xie X N, Tang S L, et al. Numerical simulation on the evolution of sediment waves caused by turbidity currents[J]. Chinese Science Bulletin, 2007, 52(16): 2429-2434(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200716017.htm
    [32] 陈麒玉, 刘刚, 何珍文, 等. 面向地质大数据的结构-属性一体化三维地质建模技术现状与展望[J]. 地质科技通报, 2020, 39(4): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202004007.htm

    Chen Q Y, Liu G, He Z W, et al. Current situation and prospect of structure-attribute integrated 3D geological modeling technology for geological big data[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 51-58(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202004007.htm
    [33] 黄璐, 张家年, 吴昊雨, 等. 弯曲海底峡谷中浊流的三维流动及沉积的初步研究[J]. 沉积学报, 2013, 31(6): 1001-1007. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201306006.htm

    Huang L, Zhang J N, Wu H Y, et al. Preliminary study of three-dimensional flow and deposition of turbidity currents in sinuous submarine canyons[J]. Acta Sedimentologica Sinica, 2013, 31(6): 1001-1007(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201306006.htm
    [34] 李超, 陈国俊, 沈怀磊, 等. 琼东南盆地中央峡谷沉积充填特征与储层分布规律[J]. 石油学报, 2013, 34(增刊2): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2013S2010.htm

    Li C, Chen G J, Shen H L, et al. Depositional filling and reservoir distribution patterns of the central canyon in Qiongdongnan Basin[J]. Acta Petrolei Sinica, 2013, 34(S2): 74-82(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2013S2010.htm
    [35] 张道军, 王亚辉, 赵鹏肖, 等. 南海北部琼东南盆地陵水段峡谷沉积建造及勘探意义[J]. 海洋学报, 2015, 2(2): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201502003.htm

    Zhang D J, Wang Y H, Zhao P X, et al. Sedimentary formation and exploration significance of the Lingshui canyon system in the Qiongdongnan Basin, northern South China Sea[J]. Acta Oceanologica Sinica, 2015, 2(2): 25-35(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201502003.htm
    [36] 解习农, 孙志鹏, 张道军, 等. 琼东南盆地深水峡谷体系沉积充填及有利储层预测[C]//第十七届中国科协年会论文集. 广州: [出版社不详], 2015: 1-8.

    Xie X N, Sun Z P, Zhang D J, et al. Depositional architectures and reservoir prediction of central canyon system in the Qiongdongnan Basin[C]//The 17th China Association for Science Annual Conference Proceedings. Guangzhou: [s. n. ], 2015: 1-8(in Chinese with English abstract).
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  736
  • PDF下载量:  318
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-03

目录

    /

    返回文章
    返回