Experimental study on Brazilian split test and acoustic emission characteristics of high temperature granite under different cooling methods
-
摘要:
干热岩地热开发中的钻井、储层压裂及热交换等环节均涉及高温岩石冷却的问题,为揭示其中岩石损伤演化规律,基于巴西劈裂试验和声发射技术,研究了不同高温及冷却方式对花岗岩抗拉性质的影响。结果表明:①25~600℃下花岗岩抗拉强度随温度升高而下降,遇水冷却使抗拉强度进-步下降并使其开始大幅下降的温度阈值提前到200,500℃后抗拉强度对遇水冷却更敏感。②荷载达到峰值,声发射累计振铃计数突增,岩样内形成断裂区;受遇水冷却影响,岩样的振铃计数峰值和能量峰值有所下降,间接反映岩石内裂纹更发育,200~300℃时降幅均较大,300℃时和500℃后花岗岩对热处理方式较敏感。③花岗岩破裂面随温度升高由平整向粗糙曲折变化,由脆性向延性转变,遇水冷却促进岩石破裂并促使脆性向延性转变的温度区间提前。研究结果为地热开采中高温岩石的稳定性评价提供理论参考。
Abstract:High-temperature rock cooling can occur in the whole process of the drilling, fracturing, and heat exchange during the geothermal energy exploitation in hot dry rock. To reveal the evolution law of rock damage, based on the Brazilian splitting test and acoustic emission technology, the effects of different high temperatures and cooling methods on the tensile properties of granite were studied. The results showed that: ①The tensile strength of granite decreases with increasing temperature from 25℃ to 600℃, and the temperature threshold, at which it decreases greatly, is advanced to 200℃ after cooling with water. After 500℃, the tensile strength is more sensitive to water cooling. ②When the load reaches the peak value, the cumulative ringing count of acoustic emission suddenly increases, and the fracture zone forms in the rock sample. Under the influence of water cooling, the ringing count peak value and energy peak value of the rock sample decrease, which indirectly reflects that the internal cracks of the rock are more developed, and both of their decrease range is larger at 200~300℃. The granite is more sensitive to heat treatment at 300℃ and after 500℃. ③With the increase in temperature, the fracture surface of granite changes from flat to rough and tortuous, from brittle to ductile; Cooling in water promotes rock fracture and advances the temperature range from brittleness to ductility. The research results provide a theoretical reference for the stability evaluation of high-temperature rocks in geothermal exploitation.
-
Key words:
- high temperature granite /
- cooling mehtod /
- Brazilian split test /
- acoustic emission /
- thermal damage
-
表 1 处理后花岗岩巴西劈裂试验结果
Table 1. Brazilian splitting test results of granite after treatment
温度/℃ 抗拉强度平均值/MPa 自然冷却 遇水冷却 25 6.14 6.16 200 6.08 5.89 300 5.89 5.15 400 4.85 4.19 500 4.02 3.08 600 1.86 1.10 表 2 花岗岩劈裂线粗糙度系数JRC
Table 2. Fracture line roughness coefficient JRC of granite
温度/℃ 自然冷却 遇水冷却 L/mm H/mm JRC L/mm H/mm JRC 25 11.72 0.92 3.911 11.42 0.90 3.917 200 13.19 1.08 4.081 10.72 0.88 4.114 300 21.66 1.92 4.432 15.68 1.55 5.054 400 17.23 1.77 5.274 10.66 1.14 5.539 500 13.40 1.58 6.177 11.19 1.34 6.284 600 12.07 1.49 6.501 16.46 2.06 6.547 -
[1] 李德威, 王焰新. 干热岩地热能研究与开发的若干重大问题[J]. 地球科学: 中国地质大学学报, 2015, 40(11): 1858-1869. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201511008.htmLi D W, Wang Y X. Major issues of research and development of hot dry rock geothermal energy[J]. Journal of Earth Science: Journal of China University of Geosciences, 2015, 40(11): 1858-1869(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201511008.htm [2] 马峰, 蔺文静, 郎旭娟, 等. 我国干热岩资源潜力区深部热结构[J]. 地质科技情报, 2015, 34(6): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506025.htmMa F, Lin W J, Lang X J, et al. Deep geothermal structures of potential hot dry rock resources area in China[J]. Geological Science and Technology Information, 2015, 34(6): 176-181(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506025.htm [3] 肖鹏, 窦斌, 田红, 等. 开采海洋区域干热岩的可行性探讨[J]. 海洋地质前沿, 2018, 34(8): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201808007.htmXiao P, Dou B, Tian H, et al. Discussion on the feasibility of mining dry hot rock in marine area[J]. Frontiers of Marine Geology, 2018, 34(8): 55-60(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201808007.htm [4] 陈东灿, 窦斌, 田红, 等. 基于花岗闪长岩矿物成分的热导率预测模型[J]. 地质科技情报, 2019, 38(2): 262-266. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902031.htmChen D C, Dou B, Tian H, et al. Thermal conductivity prediction model based on mineral composition of granodiorite[J]. Geological Science and Technology Information, 2019, 38(2): 262-266(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902031.htm [5] 窦斌, 高辉, 周刚, 等. 我国发展增强型地热开采技术所面临的机遇与挑战[J]. 地质科技情报, 2014, 33(5): 208-210. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405032.htmDou B, Gao H, Zhou G, et al. Opportunities and challenges of developing enhanced geothermal exploitation technology in China[J]. Geological Science and Technology Information, 2014, 33(5): 208-210(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405032.htm [6] 许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程: 国际经验和我国展望[J]. 吉林大学学报: 地球科学版, 2016, 46(4): 1139-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604012.htmXu T F, Yuan Y L, Jiang Z J, et al. Hot dry rock resources and enhanced geothermal engineering: International experience and China's prospect[J]. Journal of Jilin University: Earth Science Edition, 2016, 46(4): 1139-1152(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604012.htm [7] 张炜, 许天福, 吕鹏, 等. 二氧化碳增强型地热系统的研究进展[J]. 地质科技情报, 2013, 32(3): 177-182. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201303028.htmZhang W, Xu T F, Lü P, et al. A review of carbon dioxide-based enhanced geothermal system[J]. Geological Science and Technology Information, 2013, 32(3): 177-182(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201303028.htm [8] 薛卉, 舒彪, 陈科平, 等. CO2基增强型地热系统中流体-花岗岩相互作用研究进展及展望[J]. 地质科技通报, 2021, 40(3): 12-19. doi: 10.19509/j.cnki.dzkq.2021.0021Xue H, Shu B, Chen K P, et al. Research progress of fluid-granite interaction in CO2 based enhanced geothermal system[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 12-19(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0021 [9] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. doi: 10.3981/j.issn.1000-7857.2012.32.002Wang J Y, Hu S B, Pang Z H, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32): 25-31(in Chinese with English abstract). doi: 10.3981/j.issn.1000-7857.2012.32.002 [10] 徐超, 窦斌, 田红, 等. 二氧化碳爆破致裂建造增强型地热系统热储层工艺探讨[J]. 地质科技情报, 2019, 38(5): 247-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905027.htmXu C, Dou B, Tian H, et al. Discussion on technology of building enhanced geothermal system thermal reservoir by carbon dioxide blasting[J]. Geological Science and Technology Information, 2019, 38(5): 247-252(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905027.htm [11] Gérard A, Genter A, Kohl T, et al. The deep EGS(Enhanced Geothermal System) project at Soultz-sous-Forêts(Alsace, France)[J]. Geothermics, 2006, 35(5): 473-483. [12] Cui G D, Ren S R, Dou B, et al. Geothermal energy exploitation from depleted high-temperature gas reservoirs by recycling CO2: The superiority and existing problems[J]. Geoscience Frontiers, 2021, 12(6): 434-449. [13] Cui G D, Pei S F, Rui Z H, et al. Whole process analysis of geothermal exploitation and power generation from a depleted high-temperature gas reservoir by recycling CO2[J]. Energy, 2021, 217: 119340. doi: 10.1016/j.energy.2020.119340 [14] Zhang W, Sun Q, Hao S, et al. Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment[J]. Applied Thermal Engineering, 2016, 98: 1297-1304. doi: 10.1016/j.applthermaleng.2016.01.010 [15] 靳佩桦, 胡耀青, 邵继喜, 等. 急剧冷却后花岗岩物理力学及渗透性质试验研究[J]. 岩石力学与工程学报, 2018, 37(11): 2556-2564. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201811014.htmJin P Y, Hu Y Q, Shao J X, et al. Experimental study on physico-mechanics and transport properties of granite subjected to rapid cooling[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(11): 2556-2564(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201811014.htm [16] Kumari W G P, Beaumont D M, Ranjith P G, et al. An experimental study on tensile characteristics of granite rocks exposed to different high-temperature treatments[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2019, 5(1): 47-64. doi: 10.1007/s40948-018-0098-2 [17] Shao S, Wasantha P L P, Ranjith P G, et al. Effect of cooling rate on the mechanical behavior of heated Strathbogie granite with different grain sizes[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 381-387. doi: 10.1016/j.ijrmms.2014.04.003 [18] 梁铭, 张绍和, 舒彪. 不同冷却方式对高温花岗岩巴西劈裂特性的影响[J]. 水资源与水工程学报, 2018, 29(2): 186-193. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201802031.htmLiang M, Zhang S H, Shu B, et al. Effect of different cooling ways on Brazilian tension characteristics of heat-treated granite[J]. Journal of Water Resources and Water Engineering, 2018, 29(2): 186-193(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201802031.htm [19] 郤保平, 赵阳升. 600℃内高温状态花岗岩遇水冷却后力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(5): 892-898. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005007.htmXi B P, Zhao Y S. Experimental research on mechanical properties of water-cooled granite under high temperatures with in 600℃[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 892-898(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005007.htm [20] 朱振南, 田红, 董楠楠, 等. 高温花岗岩遇水冷却后物理力学特性试验研究[J]. 岩土力学, 2018, 39(增刊2): 169-176. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2025.htmZhu Z N, Tian H, Dong N N, et al. Experimental study of physico-mechanical properties of heat-treated granite by water cooling[J]. Rock and Soil Mechanics, 2018, 39(S2): 169-176(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2025.htm [21] 喻勇, 徐达, 窦斌, 等. 高温花岗岩遇水冷却后可钻性试验研究[J]. 地质科技情报, 2019, 38(4): 287-292. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904031.htmYu Y, Xu D, Dou B, et al. Experimental study on drillability of high temperature granite after water cooling[J]. Geological Science and Technology Information, 2019, 38(4): 287-292(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904031.htm [22] 吴贤振, 刘建伟, 刘祥鑫, 等. 岩石声发射振铃累计计数与损伤本构模型的耦合关系探究[J]. 采矿与安全工程学报, 2015, 32(1): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201501006.htmWu X Z, Liu J W, Liu X X, et al. Study on the coupled relationship between AE accumulative ring-down count and damage constitutive model of rock[J]. Journal of Mining and Safety Engineering, 2015, 32(1): 28-34(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201501006.htm [23] Zhao X G, Cai M, Wang J, et al. Damage stress and acoustic emission characteristics of the Beishan granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 64: 258-269. doi: 10.1016/j.ijrmms.2013.09.003 [24] Wang C, Xie J, Liu J, et al. Deformation and acoustic emission characteristics of cracked granite during creep[J]. Advances in Materials Science and Engineering, 2020, 7075287. [25] 武晋文, 赵阳升, 万志军, 等. 中高温三轴应力下鲁灰花岗岩热破裂声发射特征的试验研究[J]. 岩土力学, 2009, 30(11): 3331-3336. doi: 10.3969/j.issn.1000-7598.2009.11.019Wu J W, Zhao Y S, Wan Z J, et al. Experimental study of acoustic emission characteristics of granite thermal cracking under middle-high temperature and triaxial stress[J]. Rock and Soil Mechanics, 2009, 30(11): 3331-3336(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2009.11.019 [26] Fairhurst C E, Hudson J A. Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(3): 279-289. doi: 10.1016/S0148-9062(99)00006-6 [27] 崔翰博, 唐巨鹏, 姜昕彤. 自然冷却和遇水冷却后高温花岗岩力-声特性试验研究[J]. 固体力学学报, 2019, 40(6): 571-582. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201906005.htmCui H B, Tang J P, Jiang X T. Experimental study on mechanical and acoustic characteristics of high-temperature granite after natural cooling and water cooling[J]. Chinese Journal of Solid Mechanics, 2019, 40(6): 571-582(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201906005.htm [28] 郭彦双, 朱维申, 李术才, 等. 不同荷载作用下拉破裂的声发射特征研究[J]. 岩土力学, 2006, 27(增刊2): 1055-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2006S2064.htmGuo Y S, Zhu W S, Li S C, et al. Acoustic emission properties of tensile fracture under different load patterns[J]. Rock and Soil Mechanics, 2006, 27(S2): 1055-1058(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2006S2064.htm [29] 吴刚, 王德咏, 翟松韬. 单轴压缩下高温后砂岩的声发射特征[J]. 岩土力学, 2012, 33(11): 3237-3242. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201211006.htmWu G, Wang D Y, Zhai S T. Acoustic emission characteristics of sandstone after high temperature under uniaxial compression[J]. Rock and Soil Mechanics, 2012, 33(11): 3237-3242(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201211006.htm [30] 赵兴东, 唐春安, 李元辉, 等. 花岗岩破裂全过程的声发射特性研究[J]. 岩石力学与工程学报, 2006, 25(增刊2): 3673-3678. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2052.htmZhao X D, Tang C A, Li Y H, et al. Study on AE characteristics under uniaxial compression loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 3673-3678(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2052.htm [31] 谢和平, Pariseau W G. 岩石节理粗糙系数(JRC)的分形估计[J]. 中国科学: B辑, 1994, 24(5): 524-530. doi: 10.3321/j.issn:1006-9240.1994.05.003Xie H P, Pariseau W G. Fractal estimation of joint roughness coefficient(JRC) of rock[J]. Science in China: Series B, 1994, 24(5): 524-530(in Chinese with English abstract). doi: 10.3321/j.issn:1006-9240.1994.05.003 [32] 支乐鹏, 许金余, 刘军忠, 等. 花岗岩高温后的超声特性及力学性能研究[J]. 地下空间与工程学报, 2012, 8(4): 716-721. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201204008.htmZhi L P, Xu J Y, Liu J Z, et al. Research on ultrasonic characteristics and mechanical properties of granite under post-high temperature[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(4): 716-721(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201204008.htm [33] 翟松韬, 吴刚, 张渊, 等. 高温作用下花岗岩的声发射特征研究[J]. 岩石力学与工程学报, 2013, 32(1): 126-134. doi: 10.3969/j.issn.1000-6915.2013.01.018Zhai S T, Wu G, Zhang Y, et al. Research on acoustic emission characteristics of granite under high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1): 126-134(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2013.01.018 [34] Hoek E, Martin C D. Fracture initiation and propagation in intact rock: A review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(4): 287-300. doi: 10.1016/j.jrmge.2014.06.001 [35] Kumari W G P, Ranjith P G, Perera M S A, et al. Temperature-dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments[J]. Engineering Geology, 2017, 229: 31-33. doi: 10.1016/j.enggeo.2017.09.012 [36] Kim K, Kemeny J, Nickerson M. Effect of rapid thermal cooling on mechanical rock properties[J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 2005-2019. doi: 10.1007/s00603-013-0523-3