Comprehensive analysis of gravity and magnetic anomalies in Jinniu volcanic basin for prediction of ore deposits
-
摘要:
长江中下游是我国重要的铁、铜、金等多金属成矿带, 其南端是鄂东南矿集区, 该区作为我国重要铁铜矿产地, 集中分布了若干富铁富铜矿床; 金牛火山岩盆地处在鄂东南矿集区西南区域, 与成矿带中多个矿区的成矿条件相似, 具有铁、铜、金等多金属矿找矿潜力。但金牛火山岩盆地具有较厚的岩浆岩和沉积岩盖层, 增加了找矿工作的困难, 需要加强技术手段的应用, 提升找矿预测效果。相邻矿集区开展的以重磁数据为主的地球物理资料综合分析工作, 为研究区构造特征分析与指导找矿奠定了良好的基础, 证明利用高精度重磁数据并结合其他地球物理资料进行综合分析解释, 可提取研究区构造格架特征、隐伏岩体和物性分布等信息, 从而推断盆地及其基底构造特征并提出找矿预测。本研究针对金牛火山岩盆地虽有找矿潜力但缺乏系统研究的问题及迫切需求, 基于实测和收集的地质与地球物理资料, 开展以重磁资料为主联合大地电磁(MT)数据的综合分析解释工作, 利用重磁异常线性信号提取、重磁异常数据多尺度分析、重磁异常反演和物性界面反演、以及电阻率成像等, 估算盆地基底深度, 圈定火山机构和隐伏岩体, 推测断裂分布、盆地边界及找矿远景区, 对于该地区基础地质调查及深部找矿预测工作具有指导作用和借鉴意义。
Abstract:The middle and lower reaches of the Yangtze River is an important iron, copper, gold and other polymetallic metallogenic belt in China. The southern part of the Yangtze River is the southeast Hubei ore concentration area. As an important source of iron and copper deposits in China, several iron-rich copper deposits are concentrated in this area. The Jinniu volcanic basin is located in the southeastern Hubei ore concentration area. The basin has the ore potential of iron, copper, gold and other polymetallic deposits with the similar metallogenic conditions of other mining areas in this metallogenic belt. However, the basin has a thick overlying strata of magnetic rock and sedimentary rock, which increases the difficulty of ore prospecting. Therefore, it is necessary to strengthen the application of technologies for improving the effect of ore prediction. In the adjacent ore concentration areas, the prospecting work mainly focuses on gravity and magnetic data and combined with other geophysical data for comprehensive analysis, which lays a good foundation for the study of structural characteristics and the guidance of prospecting prediction. These previous works has proved that by comprehensive analysis and interpretation of high-precision gravity and magnetic data combined with other geophysical data, the tectonic framework characteristics, buried rocks and physical property distribution of the study area can be extracted, so as to infer the tectonic characteristics of the basin and its basement and put forward prospecting prediction. For the lack of systematic research and demand for prospecting in Jinniu volcanic basin, based on measured and collected geological and geophysical data, comprehensive analysis and interpretation of gravity and magnetic data combined with MT data were carried out. The techniques of linear signal extraction, multi-scale analysis, inversion and resistivity imaging, etc., were utilized to estimate the depth of the basin basement, delineate volcanic mechanism and buried rocks, and speculate fractures, basin boundary, and some areas of prospecting prospect. The such research has the guidance or reference significance for the basic geological survey and deep ore prediction in this area.
-
图 1 区域地质图(据文献[41]修改)
Q.第四系;K2-R.上白垩统-新近系;K1.下白垩统;T2-J2.中三叠统-中侏罗统;D3-T1.上泥盆统-下三叠统;Z-S.震旦系-志留系;P1.前震旦系;γ.花岗岩;γπ.花岗斑岩;γδ.花岗闪长岩;γδπ.花岗闪长斑岩;Qη.石英二长岩;Qηδ.石英二长闪长岩;Qηoπ.石英二长闪长玢岩;δo.石英闪长岩;δou.石英闪长玢岩;δ.闪长岩; β.玄武岩; 1.背斜; 2.倒转背斜; 3.向斜; 4.倒转向斜; 5.压性断裂; 6.压扭性断裂; 7.断裂; 8.复合断裂; 9.铁矿床; 10.铜矿床; 11.铁铜矿床; 12.铜铁矿床; 13.金铜矿床; 14.铜钼矿床; 15.钨钼矿床; 16.铅锌银矿床; 17.铜钨钼矿床; 18.地质界线; 19.不整合线; 20.岩相界线; 21.省界; 22.工作区范围; 23.湖泊
Figure 1. Regional geological map
-
[1] 周涛发, 范裕, 陈静, 等. 长江中下游成矿带关键金属矿产研究现状与进展[J]. 科学通报, 2020, 65(33): 3665-367 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033004.htmZhou T F, Fan Y, Chen J, et al. Critical metal resources in the Middle-Lower Yangtza River Valley metallogenic belt[J]. Chinese Science Bulletin, 2020, 65(33): 3665-3677(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033004.htm [2] 李金岷, 黄鑫, 石文杰, 等. 山东牟乳成矿带金青顶矿区三维综合找矿模型的构建及深部预测[J]. 地质科技通报, 2021, 40(6): 151-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202106017.htmLi J M, Huang X, Shi W J, et al. Three-dimensional comprehensive model and deep prediction of the Jinqingding gold deposit, Muping-Rushan metallogenic belt, Shandong, China[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 151-164(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202106017.htm [3] 赵风顺, 华杉, 吴昊, 等. 印度尼西亚苏门答腊岛浅成地温热液型金(银)矿产资源总量预测[J]. 地质科技通报, 2021, 40(1): 119-131. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202101012.htmZhao F S, Hua S, Wu H, et al. Quantitative prediction of the undiscovered eqpithermal gold(silver)mineral resources in Sumatra, Indonesia[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 119-131(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202101012.htm [4] 胡清乐. 鄂东南地区中生代成岩成矿构造背景与时空分布规律[J]. 资源环境与工程, 2014, 28(6): 767-776. doi: 10.3969/j.issn.1671-1211.2014.06.001Hu Q L. The mesozoic diagenetic & metallogenic tectonic background and the temporal & spatial distribution in the southeast of Hubei Province[J]. Resources Environment & Engineering, 2014, 28(6): 767-776(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1211.2014.06.001 [5] 毛景文, 袁顺达, 谢桂青, 等. 21世纪以来中国关键金属矿产找矿勘查与研究新进展[J]. 矿床地质, 2019, 38(5): 935-969. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905001.htmMao J W, Yuan S D, Xie G Q, et al. New advances on metallogenic studies and exploration on critical minerals of China in 21st Century[J]. Mineral Deposits, 2019, 38(5): 935-969(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905001.htm [6] 谢桂青, 毛景文, 李瑞玲, 等. 鄂东南地区矽卡岩铁矿床的地质特征和矿床模式讨论[J]. 矿床地质, 2006, 25(增刊1): 147-150. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2006S1042.htmXie G Q, Mao J W, Li R L, et al. Geological characteristics and mineral model of skarn Fe deposits from southeastern Hubei Province, China[J]. Mineral Deposits, 2006, 25(S1): 147-150(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2006S1042.htm [7] 谢桂青, 朱乔乔, 姚磊, 等. 鄂东南地区晚中生代铜铁金多金属矿的区域成矿模型探讨[J]. 矿物岩石地球化学通报, 2013, 32(4): 418-426. doi: 10.3969/j.issn.1007-2802.2013.04.005Xie G Q, Zhu Q Q, Yao L, et al. Discussion on regional metal mineral deposit model of Late Mesozoic Cu-Fe-Au polymetallic deposits in the southeast Hubei Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(4): 418-426(in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2013.04.005 [8] 薛迪康, 葛宗侠, 胡惠民. 鄂东南铜金矿床成矿模式与找矿模型[M]. 武汉: 中国地质大学出版社, 1997.Xue D K, Ge Z X, Hu H M. Metallogenic and prospecting models for copper-gold deposits in the southeastern Hubei[M]. Wuhan: China University of Geosciences Press, 1997(in Chinese). [9] 边建华. 鄂东金山店-灵乡地区矽卡岩型铁矿床构造控矿规律研究[D]. 武汉: 中国地质大学(武汉), 2016.Bian J H. Researsh of structural ore-controlling regularities of the Jinshangdian-Lingxiang skarn iron ore deposits, eastern Hubei Province[D]. Wuhan: China University of Geosciences(Wuhan), 2016(in Chinese with English abstract). [10] 朱丹, 刘天佑, 杨宇山. 鄂东南地区岩体重磁异常场特征及找矿方向[J]. 物探与化探, 2017, 41(4): 587-593. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201704001.htmZhu D, Liu T Y, Yang Y S. Gravity and magnetic anomalies characteristics of rock bodies and ore-prospecting orientation in the southeast of Hubei Province[J]. Geophysical and Geochemical Exploration, 2017, 41(4): 587-593. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201704001.htm [11] 朱丹, 刘天佑, 杨宇山, 等. 鄂东南地区控岩构造及隐伏岩体特征的地球物理解释[J]. 地球科学, 2018, 44(2): 640-651. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201902025.htmZhu D, Liu T Y, Yang Y S, et al. Geophysical interpretation of rock-controlling structure and concealed rock mass features in southeast Hubei Province[J]. Earth Science, 2018, 44(2): 640-651(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201902025.htm [12] 熊盛青, 丁燕云, 李占奎. 中国陆域磁性基底深度及其特征[J]. 地球物理学报, 2014, 57(12): 3981-3993. doi: 10.6038/cjg20141211Xiong S Q, Ding Y Y, Li Z K. Characteristics of China continent magnetic basement depth[J]. Chinese Journal of Geophysics, 2014, 57(12): 3981-3993(in Chinese with English abstract). doi: 10.6038/cjg20141211 [13] 吕庆田, 孟贵祥, 严加永, 等. 长江中下游成矿带铁-铜成矿系统结构的地球物理探测: 综合分析[J]. 地学前缘, 2020, 27(2): 232-253. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202002016.htmLü Q T, Meng G X, Yan J Y, et al. The geophysical exploration of mesozoic iron-copper mineral system in the middle and lower reaches of the Yangtze river metallogenic belt: A synthesis[J]. Earth Science Frontiers, 2020, 27(2): 232-253(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202002016.htm [14] 段海龙, 陈耀, 张青, 等. 北山成矿带月牙山-老硐沟地区铜多金属矿床成矿预测[J]. 地质科技通报, 2021, 40(5): 188-197. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105020.htmDuan H L, Chen Y, Zhang Q, et al. Metallogenic prediction of copper polymetallic deposit in the Yueyashan-Laodonggou area, Beishan Ore Belt[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 188-197(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105020.htm [15] Babu H. Basement structure of the Cuddapah Basin from gravity anomalies[J]. Tectonophysics, 1993, 223(3/4): 411-422. [16] 杨辉. 重力, 地震联合反演基岩密度及综合解释[J]. 石油地球物理勘探, 1998, 33(4): 496-502. doi: 10.3321/j.issn:1000-7210.1998.04.008Yang H. Basement density inversion using gravimetric and seismic data and the integrative interpretation[J]. Oil Geophysical Prospecting, 1998, 33(4): 496-502(in Chinese with English abstract). doi: 10.3321/j.issn:1000-7210.1998.04.008 [17] Bielik M, Krajňák M, Makarenko I, et al. 3D gravity interpretation of the pre-Tertiary basement in the intramontane depressions of the Western Carpathians: A case study from the Turiec Basin[J]. Geologica Carpathica, 2013, 64(5): 399-408. doi: 10.2478/geoca-2013-0027 [18] 孙喜明, 张碧涛, 贠智能, 等. 应用重力资料对哈萨克斯坦南部S盆地进行基底岩性填图[J]. 石油地球物理勘探, 2008, 43(增刊1): 136-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2008S1029.htmSun X M, Zhang B T, Yun Z N, et al. Application of gravity data to carry out lithologic mapping of basement in S basin of south Kazakhstan[J]. Oil Geophysical Prospecting, 2008, 43(S1): 136-138(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2008S1029.htm [19] Tschirhart V, Pehrsson S J. New insights from geophysical data on the regional structure and geometry of the southwest Thelon Basin and its basement, Northwest Territories, Canada[J]. Geophysics, 2016, 81(5): B167-B178. doi: 10.1190/geo2015-0586.1 [20] 陈安国, 周涛发, 刘东甲, 等. 长江中下游成矿带宣城矿集区重磁场特征与找矿启示[J]. 矿床地质, 2020, 39(5): 879-892. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202005008.htmChen A G, Zhou T F, Liu D J, et al. Gravity and magnetic characteristics of Xuancheng ore concentration area along Middle-Lower Yangtze River Valley metallogenic belt: Implications to ore prospecting[J]. Mineral Deposits, 2020, 39(5): 879-892(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202005008.htm [21] 严加永, 吕庆田, 陈向斌, 等. 基于重磁反演的三维岩性填图试验: 以安徽庐枞矿集区为例[J]. 岩石学报, 2014, 30(4): 1041-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201404012.htmYan J Y, Lü Q T, Chen X B, et al. 3D lithologic mapping test based on 3D inversion of gravity and magnetic data: A case study in Lu-Zong ore concentration district, Anhui Province[J]. Acta Petrologica Sinica, 2014, 30(4): 1041-1053(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201404012.htm [22] 祁光, 吕庆田, 严加永, 等. 先验地质信息约束下的三维重磁反演建模研究: 以安徽泥河铁矿为例[J]. 地球物理学报, 2012, 55(12): 4194-4206. doi: 10.6038/j.issn.0001-5733.2012.12.031Qi G, Lü Q T, Yan J Y, et al. Geologic constrained 3D gravity and magnetic modeling of Nihe deposit: A case study[J]. China Journal of Geophysics, 2012, 55(12): 4194-4206(in Chinese with English abstract). doi: 10.6038/j.issn.0001-5733.2012.12.031 [23] 郭伟, 姚长利, 王亚民, 等. 重磁综合约束反演在大杨树盆地油气勘探中的应用[J]. 石油地球物理勘探, 2014, 49(增刊1): 233-242. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2014S1043.htmGuo W, Yao C L, Wang Y M, et al. Comprehensive constrained inversion of gravity and magnetic in reservoir exploration in Dayangshu Basin[J]. Oil Geophysical Prospecting, 2014, 49(S1): 233-242(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2014S1043.htm [24] 张季生, 高锐, 李秋生, 等. 庐枞火山岩盆地及其外围重、磁场特征[J]. 岩石学报, 2010, 26(9): 2613-2622. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201009010.htmZhang J S, Gao R, Li Q S, et al. Characteristics of gravity and magnetic field of Luzong Volcano Basin and its periphery[J]. Acta Petrologica Sinica, 2010, 26(9): 2613-2622(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201009010.htm [25] 鲁宝亮, 孙晓猛, 张功成, 等. 南海北部盆地基底岩性地震-重磁响应特征与识别[J]. 地球物理学报, 2011, 54(2): 563-572. doi: 10.3969/j.issn.0001-5733.2011.02.036Lu B L, Sun X M, Zhang G C, et al. Seismic-potential field response characteristics and identification of basement lithology of the northern South China Sea basin[J]. China Journal of Geophysics, 2011, 54(2): 563-572(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.02.036 [26] Baptiste J, Martelet G, Faure M, et al. Mapping of a buried basement combining aeromagnetic, gravity and petrophysical data: The substratum of southwest Paris Basin, France[J]. Tectonophysics, 2016, 683: 333-348. doi: 10.1016/j.tecto.2016.05.049 [27] 朱保健. 多尺度小波模极大值法在位场边界检测中的应用研究[D]. 长春: 吉林大学, 2013.Zhu B J. The study on the application of Multi-scale wavelet transforms modulus maxima in boundary detection of potential fields[D]. Changchun: Jilin University, 2013(in Chinese with English abstract). [28] Canny J. A computational approach to edge-detection[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698. [29] Cooper G R J, Cowan D R. Edge enhancement of potential-field data using normalized statistics[J]. Geophysics, 2008, 71(3): H1-H4. [30] Gordell L. Gravity analysis using an exponential function-San Jacinto Graben, Callfornla[J]. Geophysics, 1979, 38(4): 684-690. [31] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis[J]. Proc. Roy. Soc. London. A., 1998, 454: 903-995. doi: 10.1098/rspa.1998.0193 [32] Huang N E, Shen Z, Long S R. A new view of the nonlinear water waves: The Hilbert spectrum[J]. Annual Review of Fluid Mechanics, 1999, 31(1): 417-457. doi: 10.1146/annurev.fluid.31.1.417 [33] Grossmann A, Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape[J]. SIAM Journal on Mathematical Analysis, 1984, 15(4): 723-736. doi: 10.1137/0515056 [34] Li Y, Oldenburg D W. 3-D inversion of magnetic data[J]. Geophysics, 1996, 61(2): 394-408. doi: 10.1190/1.1443968 [35] Li Y, Oldenburg D W. 3-D inversion of gravity data[J]. Geophysics, 1998, 63(1): 109-119. doi: 10.1190/1.1444302 [36] 冯娟, 孟小红, 陈召曦, 等. 三维密度界面的正反演研究和应用[J]. 地球物理学报, 2014, 57(1): 287-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201401024.htmFeng J, Meng X H, Chen Z X, et al. The investigation and application of three-dimensional density interface[J]. Chinese Journal of Geophysics, 2014, 57(1): 287-294(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201401024.htm [37] Oldenburg D W. The inversion and interpretation of gravity anomalies[J]. Geophysics, 1974, 39(4): 526-536. doi: 10.1190/1.1440444 [38] Parker R L. The rapid calculation of potential anomalies[J]. Geophysical Journal International, 1973, 31(4): 447-455. doi: 10.1111/j.1365-246X.1973.tb06513.x [39] DeGroot-Hedlin C, Constable S. Occam′s inversion to generate smooth, two-dimensional models from magnetotelluric data[J]. Geophysics, 1990, 55(12): 1613-1624. doi: 10.1190/1.1442813 [40] Kelbert A, Meqbel N, Egbert G D, et al. ModEM: A modular system for inversion of electromagnetic geophysical data[J]. Computers and Geosciences, 2014, 66(3): 40-53. [41] 舒全安, 陈培良, 程建荣, 等. 鄂东铁铜矿产地质[M]. 北京: 冶金工业出版社, 1992.Su A Q, Chen P L, Cheng J R, et al. Iron and copper mineral geology in Eastern Hubei[M]. Beijing: Metallurgical Industry Press, 1992(in Chinese). [42] 肖明顺, 杨龙彬, 高宝龙, 等. 鄂东典型铁矿区深部找矿重磁联合反演解释研究与示范报告[R]. 武汉: 中国冶金地质总局中南地质勘查院, 2018.Xiao M S, Yang L B, Gao B L, et al. Research and demonstration report on gravity and magnetic joint inversion interpretation for deep prospecting of typical iron mining areas in Eastern Hubei[R]. Wuhan: Central South Geological Survey Institute of China Metallurgical Geology Bureau, 2018(in Chinese). [43] 侯遵泽, 杨文采. 中国重力异常的小波变换与多尺度分析[J]. 地球物理学报, 1997, 40(1): 85-95. doi: 10.3321/j.issn:0001-5733.1997.01.010Hou Z Z, Yang W C. Wavelet transform and multi-scale analysis on gravity anomalies of China(in Chinese with English abstract)[J]. Chinese Journal of Geophysics, 1997, 40(1): 85-95(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.1997.01.010 [44] 刘彩云. 基于小波变换的位场场源识别与异常分离方法研究[D]. 北京: 中国地质大学(北京), 2014.Liu C Y. Research on source identification of potential field and anomaly separation based on wavelet transform[D]. Beijing: China University of Geosciences(Beijing), 2014(in Chinese with English abstract). [45] Fedi M, Quarta T. Wavelat analysis for the regional-residual and local separation of potential field anomalies[J]. Geophysics Prospecting, 1988, 46(5): 507-525. [46] 王浩然, 陈超, 杜劲松. 重力梯度张量数据的三维反演方法与应用[J]. 石油地球物理勘探, 2013, 48(3): 474-481. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201303020.htmWang H R, Chen C, Du J S. 3-D inversion of gravity gradient tensor data and its application[J]. Oil Geophysical Prospecting, 2013, 48(3): 474-481(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201303020.htm [47] 孙石达. 磁总场异常及其梯度联合反演方法研究[D]. 武汉: 中国地质大学(武汉), 2016.Sun S D. Joint inversion of total field anomaly and its gradients[D]. Wuhan: China University of Geosciences(Wuhan), 2016(in Chinese with English abstract). [48] Li Y, Oldenburg D W. Incorporating geological dip information into geophysical inversions[J]. Geophysics, 2000, 65(1): 148-157. doi: 10.1190/1.1444705 [49] Sun J, Li Y. Inversion of surface and borehole gravity with thresholding and density constraints[C]//Anon. 2010 SEG Annual Meeting. [S. l. ]: Society of Exploration Geophysicists, 2000. [50] Daubechies I. Ten lectures on wavelets[M]. Philadelphia: PA, SIAM., 1992. [51] 孙凯. 巴里坤盆地地质填图中地球物理信息综合应用研究[D]. 武汉: 中国地质大学(武汉), 2018.Sun K. Research on integrated application of geophysical information on geological mapping of Barkol basin[D]. Wuhan: China University of Geosciences(Wuhan), 2018(in Chinese with English abstract).