留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同提液方式对强水驱海相砂岩油藏驱油效率影响的实验研究

李伟 王亚会 陈肖 蒋鏖 杨勇 王伟峰

李伟, 王亚会, 陈肖, 蒋鏖, 杨勇, 王伟峰. 不同提液方式对强水驱海相砂岩油藏驱油效率影响的实验研究[J]. 地质科技通报, 2021, 40(5): 301-306. doi: 10.19509/j.cnki.dzkq.2021.0030
引用本文: 李伟, 王亚会, 陈肖, 蒋鏖, 杨勇, 王伟峰. 不同提液方式对强水驱海相砂岩油藏驱油效率影响的实验研究[J]. 地质科技通报, 2021, 40(5): 301-306. doi: 10.19509/j.cnki.dzkq.2021.0030
Li Wei, Wang Yahui, Chen Xiao, Jiang Ao, Yang Yong, Wang Weifeng. Experimental study on the effect of different liquid extraction methods on the oil displacement efficiency of strong water flooding marine sandstone reservoirs[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 301-306. doi: 10.19509/j.cnki.dzkq.2021.0030
Citation: Li Wei, Wang Yahui, Chen Xiao, Jiang Ao, Yang Yong, Wang Weifeng. Experimental study on the effect of different liquid extraction methods on the oil displacement efficiency of strong water flooding marine sandstone reservoirs[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 301-306. doi: 10.19509/j.cnki.dzkq.2021.0030

不同提液方式对强水驱海相砂岩油藏驱油效率影响的实验研究

doi: 10.19509/j.cnki.dzkq.2021.0030
详细信息
    作者简介:

    李伟(1972-), 男, 高级工程师, 主要从事油田开发、油藏工程及油藏管理工作。E-mail: liwei1@cnooc.com.cn

  • 中图分类号: TE357.1

Experimental study on the effect of different liquid extraction methods on the oil displacement efficiency of strong water flooding marine sandstone reservoirs

  • 摘要: 南海东部海相砂岩强底水驱稠油油藏经过多年开发,面临油田综合含水高、采出程度低的问题,油井提液是改善开发效果、实现稳产增产的重要措施,目前国内外关于不同提液方式对驱油效率的影响研究较少。为此,基于PY油田主力油藏典型渗透率级别天然岩心,开展了实际油藏条件下的水驱油核磁共振实验研究,分析了高含水期中不同提液组合方式下驱油效率的变化,从不同孔隙类型的动用程度揭示了影响驱油效率变化的内在因素并优选出适合该类型油藏的提液方式。实验结果表明:在多次控幅提液方式下,较于其他提液方式驱油效率平均提高了6.08%,能大幅提高微孔与小孔的动用程度,孔隙动用程度平均增加了7.76%,提液效果最佳。该成果为海相砂岩稠油油藏制定合理提液技术政策提供了依据。

     

  • 图 1  核磁共振成像实验设备图

    Figure 1.  Diagram of MRI experimental equipment

    图 2  核磁共振成像实验流程示意图

    Figure 2.  Schematic diagram of the MRI experiment process

    图 3  4种提液方式下注入PV数与驱油效率曲线图

    Figure 3.  Injection of PV number and oil displacement efficiency in four types of extraction methods

    图 4  A-1和A-2核磁T2弛豫谱

    Figure 4.  A-1 and A-2 NMR T2 relaxation spectrum

    图 5  A-3和A-4核磁T2弛豫谱

    Figure 5.  A-3 and A-4 NMR T2 relaxation spectrum

    图 6  4种提液方式下孔隙的动用程度

    Figure 6.  Sweep degree of pores under four extration methods

    表  1  水驱油核磁成像提液方案设计

    Table  1.   Design of water-flooding nuclear magnetic imaging fluid extraction scheme

    岩心渗透率/10-3 μm2 原油黏度/(mPa·s) 提液方式
    2 000 100 中高含水期多次控幅提液:0.1 mL/min至含水率80%或80%~90%+0.5 mL/min×5 PV+1 mL/min×5 PV+1.5 mL/min至含水率100%(驱替PV数>20 PV)
    特高含水期多次控幅提液:0.1 mL/min至含水率95%+0.5 mL/min×5 PV+1 mL/min×5 PV+1.5 mL/min至含水率100%
    中高含水期一次大幅提液:0.1 mL/min至含水率90%或>90%+1.5 mL/min至含水率100%
    特高含水期一次大幅提液:0.1 mL/min至含水率95%+1.5 mL/min至含水率100%
    下载: 导出CSV

    表  2  取心岩样基本参数

    Table  2.   Basic parameters of coring rock samples

    岩心编号 岩心长度/cm 岩心直径/cm 液测孔隙度/% 气测渗透率/10-3 μm2
    A-1 4.54 2.42 33.45 2 157.68
    A-2 4.31 2.41 31.46 1 793.97
    A-3 4.78 2.39 32.37 1 969.33
    A-4 4.72 2.42 34.09 2 116.18
    下载: 导出CSV

    表  3  地层水分析资料

    Table  3.   Analysis data of formation water

    离子 Na+/K+ Ca2+ Mg2+ Cl- HCO3- SO42- 总矿化度
    质量浓度/(mg·L-1) 10 166 695 191 17 409 76 0 28 537
    下载: 导出CSV

    表  4  4种提液方式下岩心基础数据

    Table  4.   Basic data of cores in four types of extraction methods

    岩心编号 孔隙度/% 渗透率/10-3 μm2 饱和油/mL 束缚水饱和度/% 实验
    A-1 33.45 2 157.68 5.60 19.84 高含水期一次大幅提液
    A-2 31.46 1 793.97 5.05 18.43 特高含水期一次大幅提液
    A-3 32.37 1 969.33 5.50 20.76 高含水期多次控幅提液
    A-4 34.09 2 116.18 5.85 20.96 特高含水期多次控幅提液
    下载: 导出CSV

    表  5  4种提液方式下驱油效率的实验结果

    Table  5.   Experiment result of oil displacement efficiency in four types extraction methods

    提液方式 提液时含水率/% 单次提液幅度/% 驱油效率/%
    高含水期一次大幅提液 95 - 54.46
    特高含水期一次大幅提液 90 - 59.41
    高含水期多次控幅提液 80 10.90, 3.64, 1.81 63.64
    特高含水期多次控幅提液 95 9.83, 4.27, 0.85 62.39
    下载: 导出CSV

    表  6  一次大幅提液不同驱替阶段累计孔隙度分量统计

    Table  6.   Accumulated porosity components in different displacement stages of a large-scale fluid extraction

    岩心编号 提液方式 0.1 mL/min 1.5 mL/min 低速水驱 提液后
    阶段末φ/% 孔隙度分量减小值/%
    A-1 中高一次 14.12 10.74 11.44 3.38
    A-2 特高一次 13.01 10.28 11.65 2.73
    下载: 导出CSV

    表  7  多次控幅提液不同驱替阶段累计孔隙度分量统计

    Table  7.   Accumulated porosity components in different displacement stages of multiple amplitude control fluid extraction

    岩心编号 提液方式 0.1 mL/min 一次 二次 三次 一次提液 二次提液 三次提液
    φ/% 孔隙度分量减小值/%
    A-3 中高多次控幅 15.84 12.58 11.59 11.16 3.26 0.99 0.43
    A-4 特高多次控幅 13.49 10.62 9.38 8.33 2.87 1.24 1.05
    下载: 导出CSV
  • [1] 张伟, 曹仁义, 罗东红, 等. 南海珠江口盆地海相砂岩油藏高倍数水驱驱替特征[J]. 油气地质与采收率, 2018, 25(2): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201802010.htm

    Zhang W, Cao R Y, Luo D H, et al. Displacement characteristics of high-multiple water drive in marine sandstone reservoirs in the Pearl River Mouth Basin, South China Sea[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(2): 65-71(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201802010.htm
    [2] 戴宗, 江俊, 李海龙, 等. 海相稠油油藏高倍数水驱岩心润湿性实验及微观机理[J]. 科学技术与工程, 2019, 19(33): 157-163. doi: 10.3969/j.issn.1671-1815.2019.33.023

    Dai Z, Jiang J, Li H L, et al. Wettability experiment of core and mico-mechanism during high-multiple water flooding in heavy oil reservoir[J]. Science Technology and Engineering, 2019, 19(33): 157-163(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2019.33.023
    [3] 王成胜, 田津杰, 阚亮, 等. 高倍数水驱开发效果评价研究[J]. 石油化工应用, 2020, 39(12): 31-43. doi: 10.3969/j.issn.1673-5285.2020.12.007

    Wang C S, Tian J J, Kan L, et al. Evaluation of high multiple water drive development effect[J]. Petrochemical Industry Application, 2020, 39(12): 31-43(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5285.2020.12.007
    [4] 黄世军, 孙常伟, 常阳, 等. 多倍水驱下岩心接触角变化[J]. 科学技术与工程, 2016, 16(4): 178-181. doi: 10.3969/j.issn.1671-1815.2016.04.033

    Huang S J, Sun C W, Chang Y, et al. Contact angle alteration for cores under multiplex pore volume water flooding[J]. Science Technology and Engineering, 2016, 16(4): 178-181(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2016.04.033
    [5] 黄福堂. 油田注水开发过程中储层岩石表面性质变化因素研究[J]. 石油勘探与开发, 1985, 12(3): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198503009.htm

    Huang F T. Study of the factors influencing the surface characterization during oil field water-flooding development[J]. Petroleum Exploration and Development, 1985, 12(3): 45-51(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198503009.htm
    [6] 杜旭林, 戴宗, 辛晶, 等. 强底水稠油油藏水平井三维水驱物理模拟实验[J]. 岩性油气藏, 2020, 32(2): 141-148. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202002016.htm

    Du X L, Dai Z, Xin J, et al. Three-dimensional water flooding physical simulation experiment of horizontal well in heavy oil reservoir with strong bottom water[J]. Lithologic Reservoirs, 2020, 32(2): 141-148(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202002016.htm
    [7] 江俊. 海上强底水普通稠油油藏水驱规律研究[D]. 北京: 中国石油大学(北京), 2019.

    Jiang J. Research on water flooding law of ordinary heavy oil reservoirs with strong bottom wateroffshore[D]. Beijing: China University of Petroleum (Beijing), 2019.
    [8] 罗宪波, 李金宜, 何逸凡, 等. 海上疏松砂岩油藏水驱油效率影响因素研究及应用: 以NNX油田为例[J]. 石油地质与工程, 2021, 35(1): 61-65. doi: 10.3969/j.issn.1673-8217.2021.01.012

    Luo X B, Li J Y, He Y F, et al. Influencing factors of water flooding efficiency in offshore unconsolidated sandstone reservoir and its application: Taking NNX Oilfield as an example[J]. Petroleum Geology and Engineering, 2021, 35(1): 61-65(in Chinese with English abstract). doi: 10.3969/j.issn.1673-8217.2021.01.012
    [9] Clementz D M. Clay stabilization in sandstones through adsorption of petroleum heavy ends[J]. Journal of Petroleum Technology, 1977, 29(9): 1061-1066. doi: 10.2118/6217-PA
    [10] 李廷礼, 刘彦成, 于登飞, 等. 海上大型河流相稠油油田高含水期开发模式研究与实践[J]. 地质科技情报, 2019, 38(3): 141-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903014.htm

    Li T L, Liu Y C, Yu D F, et al. Innovation and practice of development mode in high water-cut stage of large offshore fluvial heavy oilfield[J]. Geological Science and Technology Information, 2019, 38(3): 141-146(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903014.htm
    [11] Standnes D C, Austad T. Wettability alteration in chalk: Preparation of core material and oil properties[J]. Journal of Petroleum Science & Engineering, 2000, 28(3): 111-121. http://www.researchgate.net/profile/Dag_Standnes/publication/222065709_Wettability_alteration_in_chalk_1_Preparation_of_core_material_and_oil_properties/links/576513b408ae421c448779d0.pdf
    [12] 赵丁丁, 孙卫, 杜堃, 等. 特低-超低渗透砂岩储层微观水驱油特征及影响因素: 以鄂尔多斯盆地马岭油田长81储层为例[J]. 地质科技情报, 2019, 38(3): 157-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903016.htm

    Zhao D D, Sun W, Du K, et al. Microscopic waterflooding characteristics of extra-ultra low permeability sandstone reservoir and its influence factors: A case from the Chang 81 reservoir in Maling Oilfield in Ordos Basin[J]. Geological Science and Technology Information, 2019, 38(3): 157-164(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903016.htm
    [13] 刘彦成, 蒋曙鸿, 康凯, 等. 渤海典型多层砂岩油藏中高含水期定向井产能预测新方法[J]. 地质科技情报, 2019, 38(1): 214-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901023.htm

    Liu Y C, Jiang S H, Kang K, et al. A new method of productivity prediction in the multilayer commingled production with medium-high water-cut period[J]. Geological Science and Technology Information, 2019, 38(1): 214-220(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901023.htm
    [14] Qi Z, Wang Y, He H, et al. Wettability alteration of the quartz surface in the presence of metal cations[J]. Energy & Fuels, 2013, 27(12): 54-59. http://www.onacademic.com/detail/journal_1000036697667510_d97f.html
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  360
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-09

目录

    /

    返回文章
    返回