留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长期静水浸泡对三峡库区滑带土物理-化学-力学性质的影响

张迪 李岚星 胡新丽 牛李飞 王斌 王强

张迪, 李岚星, 胡新丽, 牛李飞, 王斌, 王强. 长期静水浸泡对三峡库区滑带土物理-化学-力学性质的影响[J]. 地质科技通报, 2021, 40(5): 281-289. doi: 10.19509/j.cnki.dzkq.2021.0041
引用本文: 张迪, 李岚星, 胡新丽, 牛李飞, 王斌, 王强. 长期静水浸泡对三峡库区滑带土物理-化学-力学性质的影响[J]. 地质科技通报, 2021, 40(5): 281-289. doi: 10.19509/j.cnki.dzkq.2021.0041
Zhang Di, Li Lanxing, Hu Xinli, Niu Lifei, Wang Bin, Wang Qiang. Effect of long-term immersion in static water on the physical, chemical, and mechanical properties of sliding zone soil in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 281-289. doi: 10.19509/j.cnki.dzkq.2021.0041
Citation: Zhang Di, Li Lanxing, Hu Xinli, Niu Lifei, Wang Bin, Wang Qiang. Effect of long-term immersion in static water on the physical, chemical, and mechanical properties of sliding zone soil in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 281-289. doi: 10.19509/j.cnki.dzkq.2021.0041

长期静水浸泡对三峡库区滑带土物理-化学-力学性质的影响

doi: 10.19509/j.cnki.dzkq.2021.0041
基金项目: 

国家自然科学基金重点项目 41630643

详细信息
    作者简介:

    张迪(1996-), 男, 现正攻读地质工程专业硕士学位, 主要从事地质灾害分析与防治的研究工作。E-mail: zhangdi@cug.edu.cn

    通讯作者:

    胡新丽(1968-), 女, 教授, 博士生导师, 主要从事岩土工程数值模拟与稳定性评价等方面的研究工作。E-mail: huxinli@cug.edu.cn

  • 中图分类号: P642.22

Effect of long-term immersion in static water on the physical, chemical, and mechanical properties of sliding zone soil in the Three Gorges Reservoir area

  • 摘要: 三峡水库蓄水使得库岸大量土体长期处于浸泡状态,导致土体软化从而诱发滑坡失稳。为研究长期浸泡对滑坡土体物理-化学-力学性质的影响,以马家沟滑坡原状滑带土为对象开展了浸泡软化试验,通过比较不同浸泡时间滑带土的粒度分布、界限含水率、化学与矿物成分、剪切特性等特征,探讨了滑带土浸泡软化机理。研究结果表明:浸泡过程中滑带土中Ca2+、Mg2+等离子流失较多,但矿物成分无变化;浸泡后滑带土出现阶段性粒度细化现象,液塑限和塑性指数均随黏粒含量增加而增大;随着浸泡时间增加,滑带土应力应变关系在低法向应力下由强软化型变为弱软化型,在高法向应力下由软化型变为硬化型;滑带土抗剪强度参数随着浸泡时间增加呈指数形式降低,黏聚力c降低程度大于内摩擦角φ。研究成果可以为水库滑坡稳定性评价提供理论依据。

     

  • 图 1  马家沟滑坡全貌图[1]

    Figure 1.  Boundary of the Majiagou landslide

    图 2  马家沟滑坡剖面图[2]

    Figure 2.  Profile of the Majiagou landslide

    图 3  滑带土颗粒级配曲线

    Figure 3.  Particle size distribution curve of sliding zone soil

    图 4  滑带土浸泡软化试验设计

    Figure 4.  Design of immersion softening test for sliding zone soil

    图 5  滑带土静水浸泡

    Figure 5.  Sliding zone soil immersion in static water

    图 6  不同浸泡时间上清液主要阳离子质量浓度

    Figure 6.  Main cationic concentration of supernatant with different durations of immersion

    图 7  不同浸泡时间滑带土粒度分布

    Figure 7.  Particle size distribution of sliding zone soil with different durations of immersion

    图 8  不同浸泡时间滑带土界限含水率

    Figure 8.  Limit moisture content of sliding zone soil with different durations of immersion

    图 9  不同浸泡时间滑带土剪应力-位移曲线

    Figure 9.  Shear stress-displacement curve of sliding zone soil with different durations of immersion

    图 10  不同浸泡时间滑带土抗剪强度包络线

    Figure 10.  Shear strength envelope of sliding zone soil with different durations of immersion

    图 11  滑带土抗剪强度参数衰减模型

    Figure 11.  Attenuation model of shear strength parameters of sliding zone soil

    图 12  长期浸泡滑带土物理-化学-力学性质变化示意图

    Figure 12.  Changes of physical, chemical and mechanical properties of sliding zone soil with long-term immersion

    表  1  滑带土基本物理力学参数

    Table  1.   Physical properties of sliding zone soil

    干密度ρd/(g·cm-3) 天然含水率ω/% 相对密度Gs 塑限ωP/% 液限ωL/%
    1.97 15.42 2.62 16.03 29.76
    下载: 导出CSV

    表  2  不同浸泡时间上清液所含阳离子及pH(浸泡时间0 d为去离子水)

    Table  2.   Cationic and pH of supernatant with different durations of immersion

    浸泡时间/d Ag+ Ba2+ Ca2+ K+ Mg2+ Na+ Si pH
    ρB/(mg·L-1) 占比/% ρB/(mg·L-1) 占比/% ρB/(mg·L-1) 占比/% ρB/(mg·L-1) 占比/% ρB/(mg·L-1) 占比/% ρB/(mg·L-1) 占比/% ρB/(mg·L-1) 占比/%
    0 0.00 0.00 0.00 0.00 4.69 98.12 0.07 1.46 0.02 0.42 0.00 0.00 0.00 0.00 7.18
    1 0.05 0.33 0.06 0.39 9.62 62.88 0.65 4.25 0.96 6.27 2.27 14.84 1.69 11.05 7.34
    4 0.07 0.24 0.09 0.31 17.00 58.95 1.12 3.88 1.70 5.89 5.89 20.42 2.97 10.30 7.26
    7 0.01 0.04 0.09 0.33 18.78 68.99 0.48 1.76 1.95 7.16 3.74 13.74 2.17 7.97 7.44
    10 0.05 0.14 0.12 0.34 23.81 68.07 0.65 1.86 2.43 6.95 4.92 14.07 3.00 8.58 6.71
    14 0.05 0.13 0.18 0.46 26.35 67.43 0.86 2.20 2.69 6.88 5.56 14.23 3.39 8.67 7.59
    18 0.02 0.05 0.18 0.44 27.53 66.98 1.04 2.53 2.89 7.03 6.05 14.72 3.39 8.25 6.94
    24 0.01 0.02 0.20 0.48 29.08 69.82 0.76 1.82 3.05 7.32 5.59 13.42 2.96 7.11 7.14
    30 0.03 0.07 0.21 0.48 30.22 68.37 0.89 2.01 3.28 7.42 6.10 13.80 3.47 7.85 6.68
    下载: 导出CSV

    表  3  不同浸泡时间滑带土矿物成分

    Table  3.   Mineral composition of sliding zone soil with different durations of immersion

    浸泡时间/d 方解石 蒙脱石 绿泥石 伊利石 高岭石 石英 长石
    wB/%
    0 7.41 26.74 5.26 28.32 6.27 13.44 12.56
    1 8.04 26.22 6.84 27.35 6.84 14.89 9.83
    4 5.42 27.76 4.66 28.65 6.75 12.07 14.69
    7 6.91 25.98 5.50 29.63 6.71 16.70 8.57
    10 7.54 25.61 6.08 25.28 5.17 19.98 10.34
    14 5.78 25.08 3.67 27.18 3.67 20.19 14.43
    18 6.25 25.61 8.45 20.20 8.45 20.89 10.14
    24 8.71 27.76 9.00 27.29 3.03 14.92 9.30
    30 8.76 27.92 9.44 26.50 3.05 15.01 9.33
    下载: 导出CSV

    表  4  地下水水质分析

    Table  4.   Quality analysis of the groundwater

    水类型 离子成分ρB/(mg·L-1) pH 含盐量ρB/
    (mg·L-1)
    Ca2+ Mg+ Na+ K+ Cl- SO42- HCO3-
    地下水 67.22 8.51 7.84 1.85 14.18 3.84 249.57 7.50 360.17
    下载: 导出CSV

    表  5  化学反应方程式

    Table  5.   Chemical reaction equation

    现象 化学方程式
    胶结物溶解 CaCO3+CO2+H2O→Ca2++HCO3-
    MgCO3+CO2+H2O→Mg2++HCO3-
    离子交换 土粒-Ca2++2Na+→土粒-2Na++Ca2+
    土粒-Ca2++2K+→土粒-2K++Ca2+
    蒙脱石-Ca2++2H+→蒙脱石-2H2++Ca2+
    下载: 导出CSV

    表  6  不同浸泡时间滑带土抗剪强度参数

    Table  6.   Shear strength parameters of sliding zone soil with different durations of immersion

    浸泡时间/d 黏聚力c/kPa 内摩擦角φ/(°)
    0 75.46 19.34
    1 71.85 18.58
    4 66.28 17.66
    7 59.30 16.44
    10 57.10 15.98
    14 55.45 15.75
    18 54.65 15.71
    24 53.97 15.63
    30 53.66 15.58
    下载: 导出CSV
  • [1] Hu X, He C, Zhou C, et al. Model test and numerical analysis on the deformation and stability of a landslide subjected to reservoir filling[J]. Geofluids, 2019, 2019: 1-15. http://www.researchgate.net/publication/334490099_Model_Test_and_Numerical_Analysis_on_the_Deformation_and_Stability_of_a_Landslide_Subjected_to_Reservoir_Filling
    [2] Zhang Y, Hu X, Tannant D D, et al. Field monitoring and deformation characteristics of a landslide with piles in the Three Gorges Reservoir area[J]. Landslides, 2018, 15(3): 581-592. doi: 10.1007/s10346-018-0945-9
    [3] Hu X, Zhou C, Xu C, et al. Model tests of the response of landslide-stabilizing piles to piles with different stiffness[J]. Landslides, 2019, 16(11): 2187-2200. doi: 10.1007/s10346-019-01233-4
    [4] Liu D, Hu X, Zhou C, et al. Deformation mechanisms and evolution of a pile-reinforced landslide under long-term reservoir operation[J]. Engineering Geology, 2020, 275: 105747. doi: 10.1016/j.enggeo.2020.105747
    [5] 张景昱, 宛良朋, 潘洪月, 等. 考虑水-岩作用特点的典型岸坡长期稳定性分析[J]. 岩土工程学报, 2017, 39(10): 1851-1858. doi: 10.11779/CJGE201710013

    Zhang J Y, Wan L P, Pan H Y, et al. Long-term stability of bank slope considering characteristics of water-rock interaction[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1851-1858(in Chinese with English abstract). doi: 10.11779/CJGE201710013
    [6] 邓华锋, 周美玲, 李建林, 等. 水-岩作用下红层软岩力学特性劣化规律研究[J]. 岩石力学与工程学报, 2016, 35(增刊2): 3481-3491. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2005.htm

    Deng H F, Zhou M L, Li J L, et al. Mechanical properties deteriorating change rule research of red-layer soft rock under water-rock interaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3481-3491(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2005.htm
    [7] 王旋, 胡新丽, 周昌, 等. 基于物理模型试验的滑坡-抗滑桩位移场变化特征[J]. 地质科技通报, 2020, 39(4): 103-108. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10005.shtml

    Wang X, Hu X L, Zhou C, et al. Model test on the displacement field characteristics of the landslide stabilizing piles[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 103-108(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10005.shtml
    [8] 赵宇, 崔鹏, 胡良博. 黏土抗剪强度演化与酸雨引发滑坡的关系: 以三峡库区滑坡为例[J]. 岩石力学与工程学报, 2009, 28(3): 576-582. doi: 10.3321/j.issn:1000-6915.2009.03.017

    Zhao Y, Cui P, Hu L B. Relation between evolution of clay shear strength and landslide induced by acid rain: Taking landslides in Three Gorges Reservoir area for example[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 576-582(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2009.03.017
    [9] 刘林洁, 向喜琼, 喻兴, 等. 炭质泥岩抗剪强度的饱水软化特性及工程应用研究[J]. 科学技术与工程, 2017, 17(8): 244-247. doi: 10.3969/j.issn.1671-1815.2017.08.042

    Liu L J, Xiang X Q, Yu X, et al. Characteristics of softening shear strength of carbonaceous mudstone and its engineering application[J]. Science Technology and Engineering, 2017, 17(8): 244-247(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2017.08.042
    [10] 张晓奇, 胡新丽, 刘忠绪, 等. 呷爬滑坡滑带土蠕变特性及其稳定性[J]. 地质科技通报, 2020, 39(6): 145-153. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10080.shtml

    Zhang X Q, Hu X L, Liu Z X, et al. Creep properties and stability of sliding zone soil in Gapa landslide[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 145-153(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10080.shtml
    [11] 吴恒, 张信贵, 易念平, 等. 城市环境下的水土作用对土强度的影响[J]. 岩土力学, 1999, 20(4): 25-30. doi: 10.3969/j.issn.1000-7598.1999.04.005

    Wu H, Zhang X G, Yi N P, et al. Influence of water-soil interaction on soil strength in urban areas[J]. Rock and Soil Mechanics, 1999, 20(4): 25-30(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.1999.04.005
    [12] 张信贵, 吴恒, 方崇, 等. 水土化学体系中钙镁对土体结构强度贡献的试验研究[J]. 地球与环境, 2005, 33(4): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200504012.htm

    Zhang X G, Wu H, Fang C, et al. Experimental research on Ca2+ and Mg2+ contributions to structural strength in soil body-hydrochemistry environment[J]. Earth and Environment, 2005, 33(4): 58-64(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200504012.htm
    [13] 张信贵, 易念平, 吴恒. 不同pH水环境下土变形特性的试验研究[J]. 高校地质学报, 2006, 12(2): 242-248. doi: 10.3969/j.issn.1006-7493.2006.02.012

    Zhang X G, Yi N P, Wu H. Laboratory test for soil deformation properties in solutions with various pH values[J]. Geological Journal of China Universities, 2006, 12(2): 242-248(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2006.02.012
    [14] 刘剑, 崔鹏. 水土化学作用对土体黏聚力的影响: 以蒙脱石-石英砂重塑土为例[J]. 岩土力学, 2017, 38(2): 419-427, 434. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702016.htm

    Liu J, Cui P. Influence of water-soil chemical interaction on cohesive force: A case study of montmorillonite-quartz remolded soil[J]. Rock and Soil Mechanics, 2017, 38(2): 419-427, 434(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702016.htm
    [15] 梁学战. 三峡库区水位升降作用下岸坡破坏机制研究[D]. 重庆: 重庆交通大学, 2013.

    Liang X Z. Failure mechanism research on bank slope under water level fluctuation in the Three Gorges Reservoir area[D]. Chongqing: Chongqing Jiaotong University, 2013(in Chinese with English abstract).
    [16] 刘虎虎, 缪海波, 陈志伟, 等. 含水率和离子浓度对滑带土抗剪强度的影响[J]. 地质科技情报, 2019, 38(1): 228-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901025.htm

    Liu H H, Mou H B, Chen Z W, et al. Effect of water content and ion concentration on shear strength of sliding zone soil[J]. Geological Science and Technology Information, 2019, 38(1): 228-234(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901025.htm
    [17] 汤连生. 水-土化学作用的力学效应及机理分析[J]. 中山大学学报: 自然科学版, 2000, 39(4): 104-109. doi: 10.3321/j.issn:0529-6579.2000.04.024

    Tang L S. Mechanical effect of chemical action of water on soil and analysis on its mechanism[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2000, 39(4): 104-109(in Chinese with English abstract). doi: 10.3321/j.issn:0529-6579.2000.04.024
    [18] 王洋, 汤连生, 高全臣, 等. 水土作用模式对残积红黏土力学性质的影响分析[J]. 中山大学学报: 自然科学版, 2007, 46(1): 128-132. doi: 10.3321/j.issn:0529-6579.2007.01.028

    Wang Y, Tang L S, Gao Q C, et al. Effects of water-soil interaction on mechanical strength of residual red clay[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007, 46(1): 128-132(in Chinese with English abstract). doi: 10.3321/j.issn:0529-6579.2007.01.028
    [19] 王绪民, 陈善雄, 程昌炳. 酸性溶液浸泡下原状黄土物理力学特性试验研究[J]. 岩土工程学报, 2013, 35(9): 1619-1626. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201309009.htm

    Wang X M, Chen S X, Cheng C B. Experimental study on physico-mechanical characteristics of undisturbed loess soaked in acid solution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1619-1626(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201309009.htm
    [20] Ying C, Hu X, Zhou C, et al. Analysis of chemo-mechanical behavior of silty soil under long-term immersion in saline reservoir water[J]. Bulletin of Engineering Geology and the Environment, 2020, 80(1): 627-640. doi: 10.1007/s10064-020-01928-2
    [21] 李江, 许强, 胡泽铭, 等. 川东红层原状滑带土饱水软化试验研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 4333-4342. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2084.htm

    Li J, Xu Q, Hu Z M, et al. Experimental research on softening of undisturbed saturated slip soil in eastern of Sichuan Province red bed[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 4333-4342(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2084.htm
    [22] 住房和城乡建设部. JGJ/T87-2012建筑工程地质勘探与取样技术规程[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Development. JGJ/T87-2012 Technical specification for engineering geological prospecting and sampling of constructions[S]. Beijing: China Construction Industry Press, 2012(in Chinese).
    [23] Fan X, Xu Q, Scaringi G, et al. A chemo-mechanical insight into the failure mechanism of frequently occurred landslides in the Loess Plateau, Gansu Province, China[J]. Engineering Geology, 2017, 228: 337-345. doi: 10.1016/j.enggeo.2017.09.003
    [24] 住房和城乡建设部. GB/T50123-2019土工试验方法标准[S]. 北京: 中国计划出版社, 2019.

    Ministry of Housing and Urban-Rural Development. GB/T50123-2019 Standard for geotechnical testing method[S]. Beijing: China Planning Press, 2019(in Chinese).
    [25] 庄雅婷, 黄炎和, 林金石, 等. 崩岗红土层土壤液塑限特性及影响因素研究[J]. 水土保持研究, 2014, 21(3): 208-211, 216. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201403039.htm

    Zhuang Y T, Huang Y H, Lin J S, et al. Study on liquid limit and plastic limit characteristics and factors of Benggang in red soil layer[J]. Research of Soil and Water Conservation, 2014, 21(3): 208-211, 216(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201403039.htm
    [26] 花可可, 魏朝富, 任镇江. 土壤液限和抗剪强度特征值及其影响因素研究: 基于紫色土区[J]. 农机化研究, 2011, 33(6): 105-110. doi: 10.3969/j.issn.1003-188X.2011.06.028

    Hua K K, Wei C F, Ren Z J. Characters and effects of soil liquid limit and shear strength in purple hilly-mountainous region[J]. Journal of Agricultural Mechanization Research, 2011, 33(6): 105-110(in Chinese with English abstract). doi: 10.3969/j.issn.1003-188X.2011.06.028
    [27] 王成华, 李广信. 土体应力-应变关系转型问题分析[J]. 岩土力学, 2004, 25(8): 1185-1190. doi: 10.3969/j.issn.1000-7598.2004.08.002

    Wang C H, Li G X. Analysis of problem of pattern transition in stress-strain relations of soils[J]. Rock and Soil Mechanics, 2004, 25(8): 1185-1190(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2004.08.002
    [28] 魏厚振, 汪稔, 胡明鉴, 等. 蒋家沟砾石土不同粗粒含量直剪强度特征[J]. 岩土力学, 2008, 29(1): 48-51, 57. doi: 10.3969/j.issn.1000-7598.2008.01.010

    Wei H Z, Wang R, Hu M J, et al. Strength behaviour of gravelly soil with different coarse-grained contents in Jiangjiagou Ravine[J]. Rockand Soil Mechanics, 2008, 29(1): 48-51, 57(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2008.01.010
    [29] 李振, 邢义川. 干密度和细粒含量对砂卵石及碎石抗剪强度的影响[J]. 岩土力学, 2006, 27(12): 2255-2260. doi: 10.3969/j.issn.1000-7598.2006.12.032

    Li Z, Xing Y C. Effects of dry density and percent fines on shearing strength of sandy cobble and broken stone[J]. Rockand Soil Mechanics, 2006, 27(12): 2255-2260(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2006.12.032
    [30] 郭子正, 殷坤龙, 唐扬, 等. 库水位下降及降雨作用下麻柳林滑坡稳定性评价与预测[J]. 地质科技情报, 2017, 36(4): 260-265. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704035.htm

    Guo Z Z, Yin K L, Tang Y, et al. Stability evaluation and prediction of Maliulin Landslide under reservoir water level decline and rainfall[J]. Geological Science and Technology Information, 2017, 36(4): 260-265(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704035.htm
    [31] 魏学勇, 欧阳祖熙, 董东林, 等. 库水位涨落条件下滑坡渗流场特征及稳定性分析[J]. 地质科技情报, 2011, 30(6): 128-132. doi: 10.3969/j.issn.1000-7849.2011.06.019

    Wei X Y, Ouyang Z X, Dong D L, et al. Analysis of landslide seepage and stability under the conditions of reservoir water level fluctuation[J]. Geological Science and Technology Information, 2011, 30(6): 128-132(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2011.06.019
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  1025
  • PDF下载量:  326
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28

目录

    /

    返回文章
    返回