Experimental study on sweep pattern of heavy oil reservoirs with variable speed drive based on different geological models
-
摘要:
南海东部海相砂岩稠油油藏普遍具有胶结疏松、强底水、隔夹层分布复杂、采出程度低等特点,现有的常规水驱油实验无法准确描述稠油单井波及规律。基于PY油田稠油地质油藏特征,设计了改进的底水平板水驱物理模拟实验,考虑储层韵律、隔夹层发育规模以及提液时机,综合研究单井的波及规律和稠油采出程度。实验结果表明:①均质韵律和正韵律储层发育隔夹层,将原来的底水驱动变为次生边水驱动,发育隔夹层井距越长,对底水锥进抑制作用越强,同时,受重力分异作用,多次控幅提液后,可将下部过渡带、中上部中、小孔喉内以及隔夹层附近的剩余油受效驱替出来,能提高单井波及系数。其中,特高含水期采取4级变速控幅提液后波及系数总体可提高34.1%~54.9%;Z1680均质韵律储层和Z1610正韵律储层通过多次控幅提液,实际日产油提高至提液前2~3倍,生产效果良好。②对于极差为5~10的反韵律储层,顶底部渗透性差异大,易在顶部形成高渗通道,层内隔夹层发育长度和提液方式变化,对波及范围影响不大,Z1640反韵律储层通过多次控幅提液,生产效果变化不明显。研究成果可为不同地质模式稠油油藏产液结构优化以及提液方式制定提供解决方案。
Abstract:The heavy oil reservoirs in marine sandstone in the east of South China Sea are generally characterized by loose cementation, strong bottom water, complex interlayer distribution and low recovery degree.Therefore, the existing conventional water flooding experiments can not accurately describe the sweep law of heavy oil in single wells. Based on the geological characteristics of heavy oil reservoir in the PY oilfield, an improved physical simulation experiment of bottom horizontal plate water flooding is designed.It is applied to comprehensively study the sweep law of single well and the recovery degree of heavy oil, considering reservoir rhythm, interlayer development scale and liquid extraction time. The experimentresults are showed as following.①Interbeds developed in homogeneous rhythm and positive rhythm reservoirs transform the original bottom water drive into secondary edge water drive. The longer the well spacing of interbeds is, the stronger the inhibition of bottom water coning is. In addition, the remaining oil located in the lower transition zone, middle to small pore throat in the middle and upper zones and near the interbeds can be effectively displaced by multiple amplitude controll and fluid extraction due to gravity differentiation.In this case, the single well sweep coefficient can be enhanced. The sweep efficiency can be increased by 34.1%-54.9% after adopting 4-stage variable speed to control amplitude and extract liquid during ultra-high water cut stage. Through multiple amplitude control and liquid extraction in z1680 homogeneous rhythm reservoir and z1610 positive rhythm reservoir, the daily oil production can be increased to 2-3 times of that before liquid extraction, and the production effect is good. ②For the reverse rhythm reservoir with a range of 5-10, the permeability difference between the top and bottom is significant. Thus, it is easy to form a high permeability channel at the top. The development length of interlayer and the change of liquid extraction method have little effect on the sweep range. Through multiple amplitude control and liquid extraction, the production effect of z1640 reverse rhythm reservoir is not obvious. The research results can provide solutions for the optimization of liquid production structure and the formulation of liquid extraction methods in heavy oil reservoirs with different geological models.
-
表 1 改进的均质韵律底水模型12组物理模拟实验参数
Table 1. 12 groups of physical simulation experimental parameters of improved homogeneous rhythm of bottom water model
样品号 隔夹层发育范围 含水期 提液方式 渗透率/10-3 μm2 干重/g 湿重/g 孔隙度/% 饱和油/mL 1 无隔夹层 高 一次大幅 5 549 2 985.37 3 172.58 36.71 210 2 高 多次控幅 5 282 2 934.27 3 108.42 34.15 200 3 特高 一次大幅 5 288 3 012.97 3 188.24 34.37 202 4 特高 多次控幅 5 333 2 988.79 3 164.03 34.36 200 5 1/3井距隔夹层 高 一次大幅 5 355 2 861.27 3 041.56 35.35 207 6 高 多次控幅 5 219 2 888.97 3 065.46 34.61 203 7 特高 一次大幅 5 329 2 923.47 3 105.88 35.77 210 8 特高 多次控幅 5 237 3 147.89 3 323.64 34.46 204 9 2/3井距隔夹层 高 一次大幅 5 283 2 943.85 3 127.57 36.02 210 10 高 多次控幅 5 129 2 943.85 3 127.66 36.04 210 11 特高 一次大幅 5 444 3 012.96 3 195.88 35.87 209 12 特高 多次控幅 5 189 3 032.44 3 213.76 35.55 206 表 2 改进的正韵律底水模型4组物理模拟实验参数
Table 2. Four groups of physical simulation experiment parameters of improved positive rhythm bottom water model
样品号 隔夹层发育范围 含水期 提液措施 渗透率/10-3 μm2 干重/g 湿重/g 孔隙度/% 饱和油/mL 1 无隔夹层 高 多次控幅 962, 5 327, 10 005 3 015.86 3 222.46 40.51 236 2 特高 多次控幅 1 066, 5 129, 9 984 3 058.94 3 267.17 40.83 233 3 1/3井距隔夹层 高 多次控幅 986, 5 169, 10 353 3 104.29 3 310.68 40.47 235 4 特高 多次控幅 1 025, 5 224, 10 068 3 128.27 3 335.47 40.63 236 表 3 反韵律储层数值模型网格参数和示意图
Table 3. Grid parameters and schematic diagram of anti rhythm reservoir numerical model
反韵律模型参数 模型示意图 渗透率极差为5 渗透率极差为10 水平渗透率/
10-3 μm25 000, 3 000, 1 000 水平渗透率/
10-3 μm210 000, 5 000, 1 000 垂向渗透率/
10-3 μm22 000, 1 200, 400 垂向渗透率/
10-3 μm24 000, 2 000, 400 孔隙度/% 28, 27, 25 孔隙度/% 31, 28, 25 表 4 数值模型地质油藏参数
Table 4. Geological reservoir parameters of numerical model
模型 油藏参数 隔夹层范围 提液方式 反韵律
极差为5和10原油黏度:100 mPa·s
水黏度:0.379 6 mPa·s
水相对密度:1.015
kv/kh:0.4
孔隙度/%:25~31
原油API重度:28①无隔夹层
②1/3井距隔夹层高含水期一次大幅提液
特高含水期多次控幅提液
高含水期多次控幅提液 -
[1] 李奋. 中高渗砂岩油藏水驱油效率及波及规律研究[D]. 山东青岛: 中国石油大学(华东), 2009.Li F. Study on water displacement efficiency and sweep efficiency for sandstone reservoir with medium or high permeability[D]. Qingdao Shandong: China University of Petroleum (East China), 2009(in Chinese with English abstract). [2] 王明, 杜利, 国殿斌, 等. 层间非均质大型平面模型水驱波及系数室内实验研究[J]. 石油实验地质, 2013, 35(6): 698-701. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201306023.htmWang M, Du L, Guo D B, et al. Laboratory experimental research on waterflooding sweep efficiency of large-scale and two-dimensional inter-layer heterogeneous physical model[J]. Petroleum Geology & Experiment, 2013, 35(6): 698-701 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201306023.htm [3] 张新旺, 郭和坤, 沈瑞, 等. 基于核磁共振技术水驱油剩余油分布评价[J]. 实验室研究与探索, 2017, 36(9): 17-21. doi: 10.3969/j.issn.1006-7167.2017.09.005Zhang X W, Guo H K, Shen R, et al. Microscopic experimental study on water displacement oil based on nuclear magnetic resonance technology[J]. Research and Exploration in Laboratory, 2017, 36(9): 17-21 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7167.2017.09.005 [4] 张吉磊, 罗宪波, 张运来, 等. 提高稠油底水油藏转注井注水效率研究[J]. 岩性油气藏, 2019, 31(4): 141-148. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201904015.htmZhang J L, Luo X B, Zhang Y L, et al. Improving water injection efficiency of transfer injection well in heavy oil bottom water reservoir[J]. Lithologic Reservoirs, 2019, 31(4): 141-148 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201904015.htm [5] Permadi P, Gustiawan E, Abdassah D. Water cresting and oil recovery by horizontal wells in the presence of impermeable streaks[J]. SPE 35440, 1996. [6] Dou H, Guan C Z, Lian S J. The experimental studies of physical simulation of bottom water reservoirs with barrier and permeable interbred on horizontal well[J]. SPE 55995, 1999. [7] Modaresghazani J, Moore R, Mehta S, et al. Investigation of the relative permeabilities in two-phase flow of heavy oil/water and three-phase flow of heavy oil/water/gas systems[J]. Journal of Petroleum Science and Engineering, 2019, 172: 681-689. doi: 10.1016/j.petrol.2018.08.053 [8] 刘佳, 程林松, 黄世军. 底水油藏水平井开发物理模拟实验研究[J]. 石油钻探技术, 2013, 41(1): 87-92. doi: 10.3969/j.issn.1001-0890.2013.01.017Liu J, Cheng L S, Huang S J. Physical modeling and experiment for horizontal wells in bottom water reservoir[J]. Petroleum Drilling Techniques, 2013, 41(1): 87-92 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-0890.2013.01.017 [9] 张伟, 曹仁义, 罗东红, 等. 南海珠江口盆地海相砂岩油藏高倍数水驱驱替特征[J]. 油气地质与采收率, 2018, 25(2): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201802010.htmZhang W, Cao R Y, Luo D H, et al. Displacement characteristics of high-multiple water drive in marine sandstone reservoirs in the Pearl River Mouth Basin, South China Sea[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(2): 64-71 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201802010.htm [10] 张运来, 陈建波, 周海燕, 等. 海上底水油藏水平井水驱波及系数定量表征[J]. 岩性油气藏, 2020, 32(6): 146-153. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202006014.htmZhang Y L, Chen J B, Zhou H Y, et al. Quantitative characterization of sweep coefficient of water drive in horizontal well for offshore bottom water reservoir[J]. Lithologic Reservoirs, 2020, 32(6): 146-153 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202006014.htm [11] 高文君, 左毅, 蔡喜东, 等. 新型水驱前缘解析法研究及应用[J]. 断块油气田, 2015, 22(6): 785-789. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201506025.htmGao W J, Zuo Y, Cai X D, et al. Research and application of new analytical method for frontal water-flooding[J]. Fault Block Oil & Gas Field, 2015, 22(6): 785-789 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201506025.htm [12] 薛江堂, 刘珍, 薛龙龙, 等. 水驱开发油藏高含水期驱替程度和波及系数变化规律[J]. 新疆石油地质, 2018, 39(5): 573-577. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201805012.htmXue J T, Liu Z, Xue L L, et al. Study on displacement degree and sweep efficiency variation of water-drive reservoirs at high water-cut stage[J]. Xinjiang Petroleum Geology, 2018, 39(5): 573-577 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201805012.htm [13] 宋兆杰, 李治平, 赖枫鹏, 等. 高含水期油田水驱特征曲线关系式的理论推导[J]. 石油勘探与开发, 2013, 40(2): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302009.htmSong Z J, Li Z P, Lai F P, et al. Derivation of water flooding characteristic curve for high water-cut oilfields[J]. Petroleum Exploration and Development, 2013, 40(2): 201-208 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302009.htm [14] 朱圣举, 张文博, 朱洁. 基于甲型水驱曲线的体积波及系数变化规律[J]. 特种油气藏, 2018, 25(4): 95-98. doi: 10.3969/j.issn.1006-6535.2018.04.019Zhu S J, Zhang W B, Zhu J. Change laws of volumet-ric sweep efficiency based on type A waterflood curve[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 95-98 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2018.04.019 [15] 刘晨, 张金庆, 周文胜, 等. 海上高含水油田群液量优化模型的建立及应用[J]. 中国海上油气, 2016, 28(6): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201606008.htmLiu C, Zhang J Q, Zhou W S, et al. Modeling of liquid production optimization in high water cut offshore oilfield group and its application[J]. China Offshore Oil and Gas, 2016, 28(6): 46-52 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201606008.htm [16] 刘英, 张迎春, 汪超, 等. 利用水平井分层系开发稠油厚油藏研究与应用[J]. 中国海上油气, 2012, 24(4): 32-36. doi: 10.3969/j.issn.1673-1506.2012.04.006Liu Y, Zhang Y C, Wang C, et al. A research on separate layer development of a thick heavy oil reservoir by horizontal wells and its application[J]. China Offshore Oil and Gas, 2012, 24(4): 32-36 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-1506.2012.04.006 [17] 张运来, 廖新武, 胡勇, 等. 海上稠油油田高含水期开发模式研究. 岩性油气藏, 2018, 30(4): 120-126. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201804014.htmZhang Y L, Liao X W, Hu Y, et al. Development models for offshore heavy oil field in high water cut stage[J]. Lithologic Reservoirs, 2018, 30(4): 120-126 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201804014.htm [18] 李廷礼, 廖新武, 徐玉霞, 等. 海上低幅底水稠油油藏特征及水平井开发初探[J]. 特种油气藏, 2012, 19(6): 95-98. doi: 10.3969/j.issn.1006-6535.2012.06.023Li T L, Liao X W, Xu Y X, et al. Initial study on characteris-tics and development with horizontal wells of heavy oil reservoirs with small bottom water in offshore[J]. Special Oil & Gas Reserveirs, 2012, 19(6): 95-98 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2012.06.023 [19] 姜瑞忠, 乔欣, 滕文超, 等. 储层物性时变对油藏水驱开发的影响[J]. 断块油气田, 2016, 23(6): 768-771. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201606018.htmJiang R Z, Qiao X, Teng W C, et al. Impact of physical properties time variation on waterflooding reservoir development[J]. Fault-Block Oil & Gas Field, 2016, 23(6): 768-771 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201606018.htm [20] 杜庆龙. 长期注水开发砂岩油田储层渗透率变化规律及微观机理[J]. 石油学报, 2016, 37(9): 1159-1164. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201609010.htmDu Q L. Variation law and microscopic mechanism of permeability in sandstone reservoir during long-term water flooding development[J]. Acta Petrolei Sinica, 2016, 37(9): 1159-1164 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201609010.htm [21] 刘彦锋, 张文彪, 段太忠, 等. 深度学习油气藏地质建模研究进展[J]. 地质科技通报, 2021, 40(4): 235-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104023.htmLiu Y F, Zhang W B, Duan T Z, et al. Progress of deep learning in oil and gas reservoir geological modeling[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 235-241 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104023.htm [22] 张磊岗, 屈红军, 陈硕, 等. 浅海砂质碎屑流沉积特征与模式: 以莺歌海盆地东方1-1气田莺二段为例[J]. 地质科技通报, 2021, 40(6): 140-150. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202106016.htmZhang L G, Qu H J, Chen S, et al. Sedimentary characteristics and model of shallow sea sandy debrisflow: A case study of Ying Ⅱ Member in the Dongfang 1-1 Gas Field, Yinggehai Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 140-150 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202106016.htm [23] 王伟, 宋渊娟, 黄静, 等. 利用高压压汞实验研究致密砂岩孔喉结构分形特征[J]. 地质科技通报, 2021, 40(4): 22-30, 48. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104003.htmWang W, Song Y J, Huang J, et al. Fractal characteristics of pore-throat structure in tight sandstones using high-pressure mercury intrusion porosimetry[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 22-30, 48 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104003.htm