Processes and sources identification of intermittent karst water inrush in Xiakou Tunnel
-
摘要: 岩溶涌突水问题勘察与防治一直是隧道工程建设面临的难题。峡口隧道有着较长的岩溶涌突水历史,为了查明间歇性涌突水来源,探究岩溶水系统结构对涌突水过程的控制作用,综合利用水文地质调查、水文学和水文地球化学等方法对涌突水来源和过程进行了识别与分析。结果表明:在研究区孟家陵一带存在地下水分水岭,北部和南部的地下水分别向响龙洞和峡口洞排泄。在集中涌水事件中,次涌水总量与次降雨量具有显著的线性正相关关系,集中涌水与4条盲沟排水在水文地球化学特征上具有同源性,均来自于隧道北部的岩溶水;在隧道稳定排水期间,右洞北侧盲沟主要排泄隧道北部的岩溶水,其他3处盲沟排水则主要来源于碎屑岩裂隙水;集中涌水点位于峡口岩溶水系统的饱水带附近,强降雨导致隧道上方整体处于充水状态,涌水点截断了岩溶通道的快速流而发生涌突水,并且混合了小比例的基流。在岩溶涌突水问题研究中,综合利用多技术方法和多信息渠道验证可提高涌突水来源分析的准确性。Abstract: The investigation and prevention of karst water inrush is a difficult problem in tunnel construction. The Xiakou Tunnel has a long history of karst water inrush.To identify the source of intermittent water inrush and explore the controlling effect of karst water system to the process of water inrush, the hydrogeological survey, hydrological and hydrogeochemical methods were used to identify the sources and processes of water inrush. The results show that, there is a groundwater divide at the area of Mengjialing, and the groundwater in the northern and southern area discharge into Xianglongdong and Xiakoudong, respectively. In the events of concentrated water inrush, the total amount of event water inrush has a significant linear positive correlation with the rainfall event, and the hydrogeochemical composition of the water inrush is very similar to that of the four blind drainage ditches, which indicates that all these water inrushes and blind drainage ditches come from the karst water in the northern part of the tunnel. During the stable drainage period, the karst water in the northern part of the tunnel is mainly discharged through the blind drainage ditch on the north of the right tunnel, while the groundwater of other three blind drainage ditches come from the fissure water in clastic rock.The concentrated water inrush point is located on the surface of saturated zone in the karst water system of Xiakou. The heavy rainfall events made the upper part of tunnel to be filled with karst water.The water inrush was caused by intercepting the fast flow in karst channel, and small part of base flow was mixed into the water inrush. In the study of karst water inrush, the comprehensive utilization of multi-technical methods and multi-information verifications can improve the accuracy in the source identification of water inrush.
-
Key words:
- Xiakou Tunnel /
- karst /
- water inrush /
- source identification
-
图 3 峡口隧道2020年7-12月的涌突水过程
①~⑤代表 5次隧道涌突水事件,详细信息见表 4
Figure 3. Water inrush processes of Xiakou Tunnel from July to December 2020
表 1 峡口隧道涌水历史
Table 1. Water inrush history of Xiakou Tunnel
涌水位置 涌水时间 涌水路段里程桩号 最大涌水量/(m3·h-1) 涌水段围岩 通风斜井 2011.08.28-2012.03.05 XJK0+077~101 300 大冶组(T1d)薄-中厚层灰岩 隧道左洞 2012.05.07-2012.05.12 ZK107+552~555 480 栖霞组(P1q)灰岩夹页岩、泥层 隧道右洞 2012.06.09-2012.06.29 YK107+555~595 360 栖霞组(P1q)中厚层灰岩夹泥层 通风斜井 2014.08.31-2014.09.10 XJK0+077~101 500 大冶组(T1d)薄-中厚层灰岩 隧道左洞 2020.04.19-2020.06.28 ZK109+225~275 300 嘉陵江组(T1-2j)薄-中薄层白云岩 隧道右洞 2020.04.19-2020.11.30 YK109+229~279 14 947 嘉陵江组(T1-2j)薄-中薄层白云岩 表 2 2015-2016年月度水化学与氘氧同位素统计值
Table 2. Statistics of monthly water chemistry and deuterium-hydrogen isotope from 2015 to 2016
取样位置 统计值 K+ Na+ Ca2+ Mg2+ Sr2+ SO42- Cl- HCO3- NO3- TDS δD/‰ δ18O/‰ 补给高程/m ρB/(mg·L-1) 响龙洞 平均值 0.78 1.47 69.45 6.44 0.58 22.54 2.04 207.22 6.70 213.02 -53.20 -8.47 1 013 标准差 0.14 0.22 11.02 1.04 0.14 5.85 1.14 24.94 1.98 21.77 4.04 0.45 - 右洞北侧盲沟 平均值 0.97 2.58 62.17 5.00 0.55 15.55 1.62 195.68 2.65 188.37 -57.48 -8.98 1 225 标准差 0.41 0.60 12.49 0.81 0.07 3.16 1.10 26.98 0.60 19.90 2.24 0.47 - 左洞南侧盲沟 平均值 5.98 26.65 48.68 7.25 4.40 61.45 2.63 177.53 3.04 244.45 -59.53 -9.00 1 233 标准差 2.02 10.50 11.45 1.30 1.68 22.36 1.21 26.12 1.12 29.49 2.39 0.39 - 表 3 水化学和稳定氘氧同位素测定结果
Table 3. The results of hydrochemistry and stable deuterium-oxygen isotopes
取样地点 K+ Na+ Ca2+ Mg2+ Sr2+ SO42- Cl- HCO3- NO3- TDS δ18O/‰ δD/‰ 取样时间 备注 ρB/(mg·L-1) 通风斜井涌水 1.25 1.95 59.27 2.96 0.51 29.95 4.87 180 2.46 193 - - 2014.09.02 15 L/s 通风斜井涌水 3.44 2.28 67.89 3.32 0.88 44.28 5.10 194 4.38 228 - - 2014.09.03 10 L/s 右洞北侧盲沟 1.32 1.41 59.49 3.52 0.56 24.85 5.14 210 5.77 207 - - 2014.09.02 385 L/s 右洞南侧盲沟 4.29 4.36 53.36 2.61 1.13 35.16 5.50 205 7.71 217 - - 2014.09.02 98 L/s 左洞北侧盲沟 2.56 3.58 59.15 4.55 0.72 22.62 5.14 238 7.36 225 - - 2014.09.02 58 L/s 左洞南侧盲沟 5.12 7.24 49.73 3.35 2.19 38.05 5.31 200 8.75 220 - - 2014.09.02 42 L/s 孟家陵表层泉 0.34 1.08 40.20 12.20 0.04 6.44 0.62 168 0.29 247 -8.88 -51.63 2020.07.20 涌突水① 右洞涌水点 3.49 1.21 64.80 8.74 0.65 15.20 1.15 189 2.81 312 -8.62 -53.09 2020.07.20 涌突水① 右洞南侧盲沟 1.62 4.33 62.90 4.06 0.72 19.90 1.01 178 3.72 296 -8.80 -53.58 2020.07.20 涌突水① 左洞南侧开孔 0.86 1.16 65.40 7.45 0.57 14.80 0.92 198 2.71 314 -8.46 -53.08 2020.07.20 涌突水① 左洞南侧盲沟 1.23 2.38 63.90 7.46 0.87 20.60 0.95 191 2.71 327 -8.59 -53.09 2020.07.20 涌突水① 响龙洞 0.85 1.54 73.30 6.79 0.55 21.20 1.33 210 5.90 342 -8.89 -53.96 2020.07.20 涌突水① 孟家陵落水洞 3.42 0.84 36.80 1.40 1.18 7.80 0.46 120 2.32 174 -10.84 -69.39 2020.07.26 涌突水② 右洞涌水点 1.48 1.31 66.60 9.68 1.05 27.00 0.91 251 1.10 339 -8.75 -52.21 2020.07.26 涌突水② 左洞南侧开孔 1.36 1.32 65.80 9.30 0.97 23.10 0.90 235 2.08 323 -8.80 -52.06 2020.07.26 涌突水② 响龙洞 0.69 1.65 75.20 7.65 0.84 20.10 1.35 253 6.16 354 -9.05 -53.70 2020.07.26 涌突水② 右洞涌水点 2.77 2.09 61.80 9.90 2.14 24.30 0.97 214 2.05 305 -8.65 -54.39 2020.07.30 停止涌水 左洞南侧盲沟 3.59 11.30 55.10 8.40 3.31 41.70 1.52 181 1.88 277 -8.56 -56.48 2020.07.30 停止涌水 响龙洞 0.64 1.49 70.60 6.29 0.50 17.20 1.17 231 5.87 329 -8.51 -55.26 2020.07.30 停止涌水 右洞北侧盲沟 0.88 2.83 56.70 3.50 0.45 14.10 0.78 211 3.50 293 -8.82 -55.11 2020.08.10 停止涌水 右洞南侧盲沟 1.46 10.50 54.40 3.80 0.64 22.10 1.06 210 3.18 307 -8.92 -55.70 2020.08.10 停止涌水 左洞北侧盲沟 6.00 24.60 44.00 9.80 3.85 61.90 1.84 185 0.59 334 -9.01 -57.61 2020.08.10 停止涌水 左洞南侧盲沟 4.80 28.90 43.20 7.78 3.84 57.00 1.98 190 1.10 336 -8.92 -58.00 2020.08.10 停止涌水 响龙洞 0.74 2.19 63.90 7.19 0.47 19.50 1.30 250 6.66 352 -8.70 -54.95 2020.08.10 停止涌水 表 4 次降水量与次涌水总量对比
Table 4. Comparison of event rainfall and event total water inrush
编号 降雨日期 次降雨量/mm 次涌水总量/104m3 次涌水补给系数 ① 2020.07.16-07.18 54 43 0.44 ② 2020.07.25-07.26 35 25 0.39 ③ 2020.10.01-10.06 140 123 0.48 ④ 2020.10.14-10.15 13 16 0.66 ⑤ 2020.11.17-11.24 83 75 0.49 总计 325 281 0.47 -
[1] 韩行瑞. 岩溶水文地质学[M]. 北京: 科学出版社, 2015.Han X R. Karst hydrogeology[M]. Beijing: Science Press, 2015 (in Chinese). [2] 李潇, 漆继红, 许模. 西南典型紧窄褶皱小尺度浅层岩溶水系统特征及隧道涌水分析[J]. 中国岩溶, 2020, 39(3): 375-383. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003011.htmLi X, Qi J H, Xu M. Analysis on the characteristics of small-scale shallow karst water systems in typical tight-narrow folds and tunnel water inrush in southwestern China[J]. Carsologica Sinica, 2020, 39(3): 375-383 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003011.htm [3] 范威, 王川, 金晓文, 等. 吉莲高速公路钟家山隧道涌突水条件分析[J]. 水文地质工程地质, 2015, 42(2): 38-43, 51. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201502007.htmFan W, Wang C, Jin X W, et al. Water inrush condition analysis of the Zhongjiashan Tunnel in the Jilian Highway[J]. Hydrogeology & Engineering Geology, 2015, 42(2): 38-43, 51 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201502007.htm [4] Li P Y, Wu J H, Tian R, et al. Geochemistry, hydraulic connectivity and quality appraisal of multilayered groundwater in the Hongdunzi Coal Mine, Northwest China[J]. Mine Water and the Environment, 2018, 37(2): 222-237. doi: 10.1007/s10230-017-0507-8 [5] Liu J, Wang H, Jin D W, et al. Hydrochemical characteristics and evolution processes of karst groundwater in Carboniferous Taiyuan Formation in the Pingdingshan Coalfield[J]. Environmental Earth Sciences, 2020, 79(6): 151. doi: 10.1007/s12665-020-8898-4 [6] Goldscheider N, Drew D. Methods in karst hydrogeology[M]. London: Taylor & Francis Group, 2007. [7] 罗明明, 周宏, 陈植华. 香溪河流域岩溶水循环规律[M]. 北京: 科学出版社, 2018.Luo M M, Zhou H, Chen Z H. Law of karst water cycle in Xiangxi Basin[M]. Beijing: Science Press, 2018 (in Chinese). [8] 常威, 谭家华, 黄琨, 等. 地下水多元示踪试验在岩溶隧道水害预测中的应用: 以张吉怀高铁兰花隧道为例[J]. 中国岩溶, 2020, 39(3): 400-408. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003014.htmChang W, Tan J H, Huang K, et al. Application of groundwater multi-element tracing test in water damage prediction of karst Tunnel: Taking the Orchid Tunnel of Zhangjiajie-Jishou-Huaihua High-Speed Railway as an example[J]. Carsologica Sinica, 2020, 39(3): 400-408 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003014.htm [9] 霍建光, 赵春红, 梁永平, 等, 娘子关泉域径流-排泄区岩溶水污染特征及成因分析[J]. 地质科技情报, 2015, 34(5): 147-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201505023.htmHuo J G, Zhao C H, Liang Y P, et al. Characteristic and cause analysis in the runoff-drainage area of Niangziguang Spring[J]. Geological Science and Technology Information, 2015, 34(5): 147-152 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201505023.htm [10] 陈静, 罗明明, 廖春来, 等. 中国岩溶湿地生态水文过程研究进展[J]. 地质科技情报, 2019, 38(6): 221-230. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906027.htmChen J, Luo M M, Liao C L, et al. Review of eco-hydrological process in karst wetlands of China[J]. Geological Science and Technology Information, 2019, 38(6): 221-230 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906027.htm [11] Luo M M, Chen Z H, Criss R E, et al. Dynamics and anthropogenic impacts of multiple karst flow systems in a mountainous area, South China[J]. Hydrogeology Journal, 2016, 24(8): 1993-2002. doi: 10.1007/s10040-016-1462-3 [12] Chen Y, Zhu S Y, Xiao S J. Discussion on controlling factors of hydrogeochemistry and hydraulic connections of groundwater in different mining districts[J]. Natural Hazards, 2019, 99(2): 689-704. doi: 10.1007/s11069-019-03767-1 [13] 林传年, 李利平, 韩行瑞. 复杂岩溶地区隧道涌水预测方法研究[J]. 岩石力学与工程学报, 2008, 27(7): 1469-1476. doi: 10.3321/j.issn:1000-6915.2008.07.022Lin C N, Li L P, Han X R. Research on forecast method of tunnel water inrush in complex karst areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1469-1476 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.07.022 [14] 罗明明, 肖天昀, 陈植华, 等. 香溪河岩溶流域几种岩溶水系统的地质结构特征[J]. 水文地质工程地质, 2014, 41(6): 13-19, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201406005.htmLuo M M, Xiao T Y, Chen Z H, et al. Geological structure characteristics of several karst water systems in the Xiangxi River karst basin[J]. Hydrogeology & Engineering Geology, 2014, 41(6): 13-19, 25 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201406005.htm [15] 罗明明, 黄荷, 尹德超, 等. 基于水化学和氢氧同位素的峡口隧道涌水来源识别[J]. 水文地质工程地质, 2015, 42(1): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201501003.htmLuo M M, Huang H, Yin D C, et al. Source identification of water inrush in the Xiakou Tunnel based on hydrochemistry and hydrogen-oxygen isotopes[J]. Hydrogeology & Engineering Geology, 2015, 42(1): 7-13 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201501003.htm [16] 黄荷, 罗明明, 陈植华, 等. 香溪河流域大气降水稳定氢氧同位素时空分布特征[J]. 水文地质工程地质, 2016, 43(4): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604008.htmHuang H, Luo M M, Chen Z H, et al. The spatial and temporal distribution of stable hydrogen and oxygenisotope of meteoric water in Xiangxi river basin[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 36-42 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604008.htm