Sedimentary characteristics and controlling factors of hyperpycnal flow in the Lower Shahejie Formation of Qikou Sag, Bohai Bay Basin
-
摘要:
分析陆相断陷湖盆异重流沉积的识别特征、异重流水下扇沉积体系的横向、垂向沉积序列、以及不同物源碎屑成因的异重流的沉积差异性, 从而探讨陆相断陷湖盆中异重流沉积的控制因素。以歧口凹陷沙一下异重流沉积为研究对象, 对研究区钻井岩心、测录井、地震属性以及粒度分析资料进行综合分析。结果表明, 研究区异重流具有3种典型沉积识别特征: ①两类沉积序列, 分别为下部逆粒序、上部正粒序的纺锤状二元结构沉积序列以及厚度较大且粒度特征变化不明显的均一结构沉积序列; ②粒度分析特征以递变悬浮载荷为主, 累计概率曲线类型以复杂多段式、上拱曲线式、低斜率两段式为特征; ③岩相特征为侵蚀充填沉积、广泛发育且类型多样的层理构造, 其次为陆源褐红色泥质层、褐红色泥砾以及大量的植物茎干碎片和炭质碎屑。研究区异重流沉积接受多支物源供给表现出水道化特征, 葛沽物源为最主要物源, 总体具有长距离搬运、多个朵体发育、大范围沿路沉积等特征。建立了研究区扇三角洲和辫状河三角洲物源重力流沉积模式。断陷湖盆背景下异重流沉积的控制因素为古物源、古地貌、古气候3个方面, 异重流沉积是断陷湖盆中广泛发育的沉积类型, 其中异重流水道砂岩具有良好的储集物性, 是陆相断陷湖盆油气勘探的重要方向与突破点。
Abstract:This study clarified the sedimentary characteristics of hyperpycnal flow sediments, investigated the plane and vertical characteristics and the differences in hyperpycnal flow sedimentary systems from different provenances, and finally discussed the controlling factors of hyperpycnal flow in rift basins. The sedimentary characteristics of hyperpycnal flow in the Lower Shahejie Formation of the Qikou Sag, Bohai Bay Basin have been studied through the comprehensive analysis of drilling core, logging, seismic attribute, and grain data.The results show that there are three typical recognition features for the hyperpycnal flow deposits in the study area: ① The vertical sedimentary sequence is composed of a reverse grain grading in the lower part, a normal grain grading in the upper part and a relatively thick layer with no obvious change in grain size; ② The sediment is dominated by a gradual suspension. The types of cumulative probability curves include a complex multistage style, an upper arch style and a low slope two-stage style; ③ The lithofacies is characterized by erosional filling deposition and various bedding structures with the development of maroon argillaceous layers, maroon gravels, abundant plant debris and carbonaceous debris. The channelized hyperpycnal flow sediments have multiple sources. The most significant source is the Gegu source, which is characterized by a long-distance transportation path, multiple flower bodies and widespread deposits along the transportation path.Two types of sedimentary models are established in this study, and the controlling factors of hyperpycnal flow include paleogeomorphology, paleoprovenance and paleoclimate. Considering that hyperpycnal flow widely exists in rift lacustrine basins with its channel sandstone bodies being good reservoir properties, our study suggests that hyperpycnal flow is a breakthrough point for oil and gas exploration in continental rift lacustrine basins.
-
Key words:
- hyperpycnal flow /
- Qikou Sag /
- rift basin /
- sedimentary characteristics /
- control factors
-
图 5 歧口凹陷中部沙一下亚段异重流侵蚀充填沉积特征
a.LC-3井,3 584.52 m,灰色细砂岩-砾岩-灰色细砂岩,S2段砂质支撑砾岩,成分混杂,砾石有定向排列趋势;b.LC-3井,3 583.23 m,灰色细砂岩-砂质支撑砾岩,顶部砾岩成分混杂,见拉长状泥砾,中间见砂质条带充填,砾石略定向排列;c.LC-7井,3 646.27 m,灰白色细砂岩,可见明显定向排列的泥砾;d.LC-2,3 494.87 m,砂砾岩,砾石磨圆较好,呈漂浮状,排列无定向
Figure 5. Sedimentary characteristics of erosion filling in Es1x of the central Qikou Sag
表 1 研究区沉积微相划分标准(据文献[28]修改)
Table 1. Classification standard for sedimentary facies in the study area
沉积微相 砂岩体积分数/% 单层厚度/m 岩性特征 沉积构造 测井特征 主水道 >35 >10.0 砂质支撑砾岩
多级颗粒支撑砂砾岩泥质漂砾
褐色砂质漂砾
定向排列砾石正旋回箱型曲线
高幅齿化箱型曲线分支水道 35~15 1~10.0 多级颗粒支撑中砂岩
多级颗粒支撑细砂岩褐色砂质漂砾
递变粒序
平行层理逆正旋回钟型-薄箱型曲线
高幅齿化箱型曲线水道侧缘 15~5 1~0.1 多级颗粒支撑细砂岩
多级颗粒支撑粉砂岩波状交错层理
攀升交错层理高幅齿化箱型-钟形曲线
中幅锯齿状曲线浊积席状砂 <5 <0.1 多级颗粒支撑粉砂岩
砂泥岩互层水平层理
多旋回砂泥岩互层高幅指状、锯齿状曲线
多旋回低幅指状曲线深湖泥 ≈0 ≈0 深色泥岩 块状构造 低幅锯齿状曲线 -
[1] Kuenen P H, Migilorini C I. Turbidity currents as a cause of graded bedding[J]. Geology, 1950, 58(2): 41-127. [2] 蒲秀刚, 周立宏, 韩文中, 等. 歧口凹陷沙一下亚段斜坡区重力流沉积与致密油勘探[J]. 石油勘探与开发, 2014, 41(2): 138-149. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201402003.htmPu X G, Zhou L H, Han W Z, et al. Gravity flow sedimentation and tight oil exploration in lower first member of Shahejie Formation in slope area of Qikou Sag, Bohai Bay Basin[J]. Petroleum Explorationand Development, 2014, 41(2): 138-149(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201402003.htm [3] 王华, 陈思, 甘华军, 等. 浅海背景下大型浊积扇研究进展及堆积机制探讨: 以莺歌海盆地黄流组重力流为例[J]. 地学前缘, 2015, 22(1): 21-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501004.htmWang H, Chen S, Gan H J, et al. Accumulation mechanism of large shallow marine turbidite deposits: A case study of gravity flow deposits of the Huangliu Formation in Yinggehai Basin[J]. Earth Science Frontiers, 2015, 22(1): 21-34(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501004.htm [4] 李安琪, 叶绮, 王真真, 等. 琼东南盆地陵水凹陷北部梅山组砂质碎屑流沉积特征及油气地质意义[J]. 地质科技通报, 2021, 40(1): 110-118. doi: 10.19509/j.cnki.dzkq.2021.0106Li A Q, Ye Q, Wang Z Z, et al. Sedimentary characteristics and significance in hydrocarbon exploration of sandy debris flow in Meishan Formation of the northern Lingshui Sag, Qiongdongnan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 110-118(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0106 [5] Walker R G. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps[J]. AAPG Bulletin, 1978, 62(6): 932-966. [6] Reading H G. Turbidite systems in deep-water basin margins classified by grain size and feeder system[J]. AAPG Bulletin, 1994, 78(5): 792-822. [7] Bates C. Rational theory of delta formation[J]. Bulletin of American Association of Petroleum Geology, 1953, 37(9): 2119-2162. [8] Mulder I, Syvitski J. Turbidity currents generated at river mouths during exceptional discharges to the world oceans[J]. Journal of Geology, 1995, 103(3): 285-299. doi: 10.1086/629747 [9] Zavala C, Arcuri M. Intrabasinal and extrabasinal turbidities: Origin and distinctive characteristics[J]. Sedimentary Geology, 2016, 337: 36-54. doi: 10.1016/j.sedgeo.2016.03.008 [10] Zavala C, 潘树新. 异重流成因和异重岩沉积特征[J]. 岩性油气藏, 2018, 30(1): 1-18. doi: 10.3969/j.issn.1673-8926.2018.01.001Zavala C, Pan S X. Hyperpycnal flows and hyperpycnites: Origin and distinctive characteristics[J]. Lithologic Reservoirs, 2018, 30(1): 1-18(in Chinese with English abstract). doi: 10.3969/j.issn.1673-8926.2018.01.001 [11] Zavala C, Arcuri M, Meglio M D, et al. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits[C]//Slatt R, Zavala C. Sediment transfer from shelf to deep water: Revisiting the delivery system. AAPG Studies in Geology 61, 2011: 31-51. [12] Shanmugam G. The hyperpycnite problem[J]. Journal of Palaeogeography, 2018, 7(3): 197-238. [13] 孙福宁, 杨仁超, 李冬月. 异重流沉积研究进展[J]. 沉积学报, 2016, 34(3): 452-462. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201603003.htmSun F N, Yang R C, Li D Y. Research progresses on hyperpycnal flow deposits[J]. Acta Sedimentologica Sinica, 2016, 34(3): 452-462(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201603003.htm [14] 张国栋, 鲜本忠, 晁储志, 等. 鄂尔多斯盆地三水河剖面上三叠统块状砂岩的异重流成因: 来自岩石结构的证据[J]. 沉积学报, 2019, 37(5): 934-944. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905005.htmZhang G D, Xian B Z, Chao C Z, et al. Flood-generated massive sandstones of the sanshuihe outcrop in the Triassic Ordos Basin: Evidence from sedimentary textural characteristics[J]. Acta Sedimentologica Sinica, 2019, 37(5): 934-944(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905005.htm [15] 周立宏, 陈长伟, 韩国猛, 等. 断陷湖盆异重流沉积特征与分布模式: 以歧口凹陷板桥斜坡沙一下亚段为例[J]. 中国石油勘探, 2018, 23(4): 11-20. doi: 10.3969/j.issn.1672-7703.2018.04.002Zhou L H, Chen C W, Han G M, et al. Sedimentary characteristics and distribution patterns of hyperpycnal flow in rifted lacustrine basins: A case study on lower Es1 of Banqiao slope in Qikou Sag[J]. China Petroleum Exploration, 2018, 23(4): 11-20(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2018.04.002 [16] 王家豪, 王华, 肖敦清, 等. 陆相断陷湖盆异重流与滑塌型重力流沉积辨别[J]. 石油学报, 2020, 41(4): 392-402, 411. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004004.htmWang J H, Wang H, Xiao D Q, et al. Differentiation between hyperpycnal flow deposition and slump-induced gravity flow deposition in terrestrial rifted lacustrine basin[J]. Acta Petrolei Sinica, 2020, 41(4): 392-402, 411(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004004.htm [17] Chen S, Wang H, Zhou L H, et al. Recognition and depiction of special geologic bodies of Member 3 of Dongying Formation in Littoral Slope Zone, Qikou Sag[J]. Journal of Central South University of Technology, 2011, 18(3): 898-908. doi: 10.1007/s11771-011-0779-2 [18] Wang H, Bai Y F, Huang C Y, et al. Reconstruction and application of the Paleogene provenance system of the Dongying Formation in Qikou Depression[J]. Journal of China University of Geosciences, 2009, 34(3): 448-456. doi: 10.3799/dqkx.2009.050 [19] 任建业, 廖前进, 卢刚臣, 等. 黄骅坳陷构造变形格局与演化过程分析[J]. 大地构造与成矿学, 2010, 34(4): 461-472. doi: 10.3969/j.issn.1001-1552.2010.04.002Ren J Y, Liao Q J, Lu G C, et al. Deformation framework and evolution of the Huanghua Depression, Bohai Gulf[J]. Geotectonica et Metallogenia, 2010, 34(4): 461-472(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2010.04.002 [20] Huang C Y, Wang H, Wu Y P, et al. Genetic types and sequence stratigraphy models of Palaeogene slope break belts in Qikou Sag, Huanghua Depression, Bohai Bay Basin, Eastern China[J]. Sedimentary Geology, 2012, 261: 65-75. [21] Chen S, Wang H, Zhou L H, et al. Sequence thickness and its response to episodic tectonic evolution in Paleogene Qikou Sag, Bohaiwan Basin[J]. Acta Geologica Sinica, 2012, 86(5): 1077-1092. doi: 10.1111/j.1755-6724.2012.00732.x [22] Zhou L H, Fu L X, Lou D, et al. Structural anatomy and dynamics of evolution of the Qikou Sag, Bohai Bay Basin: Implications for the destruction of North China craton[J]. Journal of Asian Earth Sciences, 2012, 47: 94-106. doi: 10.1016/j.jseaes.2011.06.004 [23] 王华, 白云风, 黄传炎, 等. 歧口凹陷古近纪东营期古物源体系重建与应用[J]. 地球科学: 中国地质大学学报, 2009, 34(3): 448-456. doi: 10.3321/j.issn:1000-2383.2009.03.009Wang H, Bai Y F, Huang C Y, et al. Reconstruction and application of the Paleogene provence system of the Dongying Formation in Qikou Depression[J]. Earth Science: Journal of China University of Geosciences, 2009, 34(3): 448-456(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2009.03.009 [24] 刘可行, 甘华军, 陈思, 等. 高精度层序格架下的陆相断陷湖盆沉积体系演化: 以南堡凹陷老爷庙地区东营组三段为例[J]. 地质科技情报, 2019, 38(3): 88-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903009.htmLiu K X, Gan H J, Chen S, et al. Evolution of sedimentary system of continental faulted lacustrine basin under high-precision sequence framework: A case from the Third Member of Dongying Formation in Laoyemiao area, Nanpu Sag[J]. Geological Science and Technology Information, 2019, 38(3): 88-102(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903009.htm [25] Wang H, Chen S, Huang C Y, et al. Architecture of sandstone bodies of Paleogene Shahejie Formation in northern Qikou Sag, Northeast China[J]. Journal of Earth Science, 2017, 28(6): 1078-1085. doi: 10.1007/s12583-016-0937-4 [26] 刘可行, 甘华军, 陈思, 等. 南堡凹陷高北地区"异迁移"型层序构型成因及其对沉积的意义[J]. 地球科学, 2020, 45(10): 3603-3617. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202010008.htmLiu K X, Gan H J, Chen S, et al. Genetic mechanism of allogenic migrated sequence stratigraphic architecture in Gaobei area of Nanpu Sag and its significance for sedimentation[J]. Earth Science, 2020, 45(10): 3603-3617(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202010008.htm [27] 黄传炎, 王华, 吴永平, 等. 歧口凹陷第三系层序格架下的油气藏富集规律[J]. 吉林大学学报: 地球科学版, 2010, 40(5): 986-995. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201005003.htmHuang C Y, Wang H, Wu Y P, et al. Analysis of the hydrocarbon enrichment regularity in the sequence stratigraphic framework of Tertiary in Qikou Sag[J]. Journal of Jilin University : Earth Science Edition, 2010, 40(5): 986-995(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201005003.htm [28] 王华, 陈思, 巩天浩, 等. 牵引流化重力流沉积过程与堆积机制: 以渤海湾盆地歧口凹陷为例[J]. 地质科技通报, 2020, 39(1): 95-104. doi: 10.19509/j.cnki.dzkq.2020.0111Wang H, Chen S, Gong T H, et al. Sedimentary process and accumulation mechanism of traction fluidization gravity flow: An example from Qikou Sag, Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 95-104(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0111 [29] 王华, 周立宏, 韩国猛, 等. 陆相湖盆大型重力流发育的成因机制及其优质储层特征研究: 以歧口凹陷沙河街组一段为例[J]. 地球科学, 2018, 43(10): 93-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810009.htmWang H, Zhou L H, Han G M, et al. Large gravity flow deposits in the Member 1 of Paleogene Shahejie Formation, Qikou Sag, Bohai Bay Basin[J]. Earth Science, 2018, 43(10): 93-114(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810009.htm [30] Lamb M P, Mohrig D. Do hyperpycnal-flow deposits record river-flood dynamics?[J]. Geology, 2009, 37(12): 1067-1070. doi: 10.1130/G30286A.1 [31] Luan G Q, Dong C M, Lin C Y, et al. Development conditions, evolution process and depositional features of hyperpycnal flow[J]. Oil & Gas Geology, 2018, 3: 438-453. [32] 杨田, 操应长, 王艳忠, 等. 异重流沉积动力学过程及沉积特征[J]. 地质论评, 2015, 61(1): 23-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201501002.htmYang T, Cao Y C, Wang Y Z, et al. Sediment dynamics process and sedimentary characteristics of hyperpycnal flows[J]. Geological Review, 2015, 61(1): 23-33(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201501002.htm [33] Muler T, Syvitski J P M, Migeon S, et al. Marine hyperpycnal flows: Initiation, behavior and related deposits: A review[J]. Marine and Petroleum Geology, 2003, 20(6/8): 861-882. [34] Mulder T, Migeon S, Savoye B, et al. Inversely graded turbidite sequences in the deep Mediterranean: A record of deposits from flood-generated turbidity currents?[J]. Geo-Marine Letters, 2001, 21(2): 86-93. doi: 10.1007/s003670100071 [35] Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48(2): 269-299. doi: 10.1046/j.1365-3091.2001.00360.x [36] Talling P J. On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings[J]. Marine Geology, 2014, 352: 155-182. doi: 10.1016/j.margeo.2014.02.006 [37] 肖晨曦, 李志忠. 粒度分析及其在沉积学中应用研究[J]. 新疆师范大学学报: 自然科学版, 2006, 25(3): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSZ200603034.htmXiao C X, Li Z Z, The research summary of grain size analysis and its application in the sedimentation[J]. Journal of Xinjiang Normal University: Natural Sciences Edition, 2006, 25(3): 118-123(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSZ200603034.htm [38] Soyinka O A, Slatt R M. Identification and micro-stratigraphy of hyperpycnites and turbidites in Cretaceous Lewis Shale, Wyoming[J]. Sedimentology, 2008, 55(5): 1117-1133. doi: 10.1111/j.1365-3091.2007.00938.x [39] Petter A L, Steel R J. Hyperpycnal flow variability and slope organization on an Eocene shelf margin, Central Basin, Spitsbergen[J]. AAPG Bulletin, 2006, 90(10): 1451-1472. doi: 10.1306/04240605144 [40] 曹卿荣, 李佩, 孙凯, 等. 应用地震属性分析技术刻画河道砂体[J]. 岩性油气藏, 2007, 19(2): 93-96. doi: 10.3969/j.issn.1673-8926.2007.02.019Cao Q R, Li P, Sun K, et al. Using seismic attributes to identify channel sand body[J]. Lithologic Reservoirs, 2007, 19(2): 93-96(in Chinese with English abstract). doi: 10.3969/j.issn.1673-8926.2007.02.019 [41] 柯友亮, 郝杰, 王华, 等. 基于叠后地震数据的南堡凹陷高南斜坡带三角洲扇体识别及演化特征[J]. 地质科技情报, 2019, 38(2): 89-100, 303. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902011.htmKe Y L, Hao J, Wang H, et al. Identification and evolution of delta fans in the Gaonan slope of Nanpu Sag, based on post-stack seismic data[J]. Geological Science and Technology Information, 2019, 38(2): 89-100, 303(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902011.htm