留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

潜江凹陷盐间页岩油储层孔隙结构分形表征与评价

孙中良 王芙蓉 韩元佳 侯宇光 何生 郑有恒 吴世强

孙中良, 王芙蓉, 韩元佳, 侯宇光, 何生, 郑有恒, 吴世强. 潜江凹陷盐间页岩油储层孔隙结构分形表征与评价[J]. 地质科技通报, 2022, 41(4): 125-137. doi: 10.19509/j.cnki.dzkq.2021.0063
引用本文: 孙中良, 王芙蓉, 韩元佳, 侯宇光, 何生, 郑有恒, 吴世强. 潜江凹陷盐间页岩油储层孔隙结构分形表征与评价[J]. 地质科技通报, 2022, 41(4): 125-137. doi: 10.19509/j.cnki.dzkq.2021.0063
Sun Zhongliang, Wang Furong, Han Yuanjia, Hou Yuguang, He Sheng, Zheng Youheng, Wu Shiqiang. Characterization and evaluation of fractal dimension of intersalt shale oil reservoirs in Qianjiang Depression[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 125-137. doi: 10.19509/j.cnki.dzkq.2021.0063
Citation: Sun Zhongliang, Wang Furong, Han Yuanjia, Hou Yuguang, He Sheng, Zheng Youheng, Wu Shiqiang. Characterization and evaluation of fractal dimension of intersalt shale oil reservoirs in Qianjiang Depression[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 125-137. doi: 10.19509/j.cnki.dzkq.2021.0063

潜江凹陷盐间页岩油储层孔隙结构分形表征与评价

doi: 10.19509/j.cnki.dzkq.2021.0063
基金项目: 

国家科技重大专项 2017ZX05049-005

国家自然科学基金项目 41772143

国家自然科学基金重点项目 41830431

详细信息
    作者简介:

    孙中良(1993-), 男, 助理工程师, 主要从事非常规油气研究工作。E-mail: 995974375@qq.com

    通讯作者:

    王芙蓉(1979-), 女, 副教授, 主要从事储层沉积和成岩作用等方面的研究工作。E-mail: wfr777@163.com

  • 中图分类号: P618.13

Characterization and evaluation of fractal dimension of intersalt shale oil reservoirs in Qianjiang Depression

  • 摘要:

    目前, 众多学者从地球化学特征、储层物性特征等方面对潜江凹陷潜江组页岩展开了较多研究, 并取得了一定的进展, 但对其孔隙的复杂性、形成孔喉的主要矿物及其影响因素的分析存在盲点。依据分形理论, 结合氮气吸附实验、高压压汞实验, 选取沉积位置不同的BX7井以及BYY2井, 分别对潜三段第四亚段(Eq34-10)页岩的比表面分形特征、孔隙结构分形特征以及孔喉分形特征进行了评价, 分析了其影响因素。结果表明, 该地区的孔隙表面较为平整, 比表面分形维数D1趋近于2, 孔隙表面的粗糙程度主要受黏土矿物本身特性影响。相较于沉积边缘的BX7井, 位于沉积中心的BYY2井储层孔隙结构分形特征更为简单。小孔径孔隙的孔体积所占比例越大, 孔隙结构分形特征越复杂。BX7井储层孔隙结构分形维数D2主要受黏土矿物以及石英的影响, 而BYY2井储层孔隙结构分形维数D2主要受白云石的影响。白云石为构成BX7井储层孔喉的主要矿物, 随白云石增加, 孔喉特征复杂, 连通性变差。BYY2井储层中石英形成的孔喉直径较小, 石英的增加会使孔隙连通性变差; 方解石形成的孔喉直径较大。页岩油的赋存会使孔隙的分形维数变小, 对孔喉分形特征的影响较小。盐类矿物的存在会阻塞孔隙, 使孔隙连通性变差。

     

  • 图 1  潜江凹陷沉积相及取样位置图

    Figure 1.  Sedimentary facies and sampling location of Qianjiang Depression

    图 2  潜江凹陷潜江组Eq34-10韵律页岩样品孔隙类型及有机质赋存状态

    A.层间孔,粒间孔,BX7井,3 046.98 m;B.层间孔,粒间孔,BX7井,3 055.32 m;C.溶蚀孔,BX7井,3 046.98 m;D.有机质在粒间孔以及层间孔内赋存,BX7井,3 055.32 m;E.白云石晶间孔,BYY2井,2 817.11 m;F.粒间孔,BYY2井,2 817.51 m;G.白云石晶间孔,BYY2井,2 817.51 m;H.有机质在白云石晶间孔内赋存,BYY2井,2 814.67 m;I.有机质在粒间孔内赋存,BYY2井,2 817.11 m

    Figure 2.  Pore types and organic matter occurrence state of Qianjiang Formation Eq34-10 rhythmic shale samples in Qianjiang Depression

    图 3  潜江凹陷潜江组Eq34-10韵律页岩样品抽提前后低温氮气吸附曲线特征

    Figure 3.  Characteristics of low-temperature nitrogen adsorption curve before and after extraction of Qianjiang Formation Eq34-10 rhythmic shale samples in Qianjiang Depression

    图 4  潜江凹陷潜江组Eq34-10韵律页岩样品抽提前后比孔容、比表面积变化柱状图

    Figure 4.  Histograms of specific pore volume and specific surface area before and after extraction of Qianjiang Formation Eq34-10 rhythmic shale samples in Qianjiang Depression

    图 5  潜江凹陷潜江组Eq34-10韵律页岩样品抽提前后压汞曲线特征

    Figure 5.  Mercury injection curve characteristics before and after extraction in Qianjiang Formation Eq34-10 rhythmic shale samples in Qianjiang Depression

    图 6  潜江凹陷潜江组Eq34-10韵律页岩样品抽提前后不同孔径进汞量分布曲线

    Figure 6.  Distribution curve of mercury intrusion in different pore sizes of before and after extraction in Qianjiang Formation Eq34-10 rhythmic shale samples in Qianjiang Depression

    图 7  由N2气体吸附等温线重建的lnV和ln(ln(P/P0))图

    Figure 7.  Plots of lnV and ln(ln(P/P0)) derived from N2 gas adsorption isotherms

    图 8  由高压压汞数据重建的lnS和lnr

    Figure 8.  Plots of lnS and lnr obtained from high-pressure mercury injection data

    图 9  江汉盆地潜江凹陷潜江组Eq34-10韵律BX7井页岩样品矿物成分对孔隙分形维数的影响

    Figure 9.  Influence of mineral composition on pore fractal dimension of shale samples from Well BX7 in Eq34-10 rhythm of Qianjiang Formation, Qianjiang Depression, Jianghan Basin

    图 10  江汉盆地潜江凹陷潜江组Eq34-10韵律BYY2井页岩样品矿物成分对孔隙分形维数的影响

    Figure 10.  Influence of mineral composition on pore fractal dimension of shale samples from Well BYY2 in Eq34-10 rhythm of Qianjiang Formation, Qianjiang Sag, Jianghan Basin

    图 11  江汉盆地潜江凹陷潜江组Eq34-10韵律BX72井页岩样品矿物成分对孔喉分形维数(D3)的影响

    Figure 11.  Influence of mineral composition on fractal dimension (D3) of pore throat of shale samples from Well BX72 in Eq34-10 rhythm of Qianjiang Formation, Qianjiang Sag, Jianghan Basin

    图 12  江汉盆地潜江凹陷潜江组Eq34-10韵律BYY2井页岩样品矿物成分对孔喉分形维数(D3-1, D3-2)的影响

    Figure 12.  Influence of mineral composition on fractal dimension (D3-1, D3-2) of pore throat of shale samples from Well BYY2 in Eq34-10 rhythm of Qianjiang Formation, Qianjiang Depression, Jianghan Basin

    图 13  江汉盆地潜江凹陷潜江组Eq34-10韵律页岩样品盐类矿物对孔隙分形维数的影响

    Figure 13.  Influence of salt minerals on fractal dimension of pore throat of shale samples in Eq34-10 rhythm of Qianjiang Formation, Qianjiang Depression, Jianghan Basin

    表  1  BX7井以及BYY2井样品矿物成分特征

    Table  1.   Mineral composition characteristics of samples from Wells BX7 and BYY2

    样品 深度/m w(TOC)/% 黏土 石英 长石 方解石 白云石 黄铁矿 石膏 硬石膏 石盐 钙芒硝
    wB/%
    BX7-1 3 046.490 2.070 21.96 12.60 16.53 14.59 31.90 2.43 \ \ \ \
    BX7-2 3 046.980 2.870 13.47 18.88 17.42 20.22 27.32 2.69 \ \ \ \
    BX7-6 3 049.020 1.400 18.13 22.47 13.02 30.27 14.43 1.68 \ \ \ \
    BX7-11 3 051.820 1.010 6.44 9.58 4.79 10.19 66.08 2.92 \ \ \ \
    BX7-15 3 053.720 2.430 37.87 25.42 10.27 8.74 11.56 3.72 2.43 \ \ \
    BX7-18 3 055.320 0.815 5.53 17.11 16.28 25.78 33.36 1.94 \ \ \ \
    BX7-25 3 060.110 0.969 8.24 8.11 20.47 13.65 46.73 2.80 \ \ \ \
    BYY2-21 2 814.450 1.830 9.13 13.87 21.37 36.25 15.17 1.94 \ \ 2.27 \
    BYY2-90 2 817.105 2.440 19.96 8.60 28.35 5.17 29.71 2.68 \ 3.59 1.95 \
    BYY2-101 2 817.505 2.050 19.64 8.40 30.39 13.49 22.13 1.68 \ \ 0.85 3.43
    BYY2-161 2 820.230 1.150 15.50 9.52 20.54 1.60 44.38 1.70 2.43 2.11 2.22 \
    下载: 导出CSV

    表  2  基于N2气体吸附以及高压压汞数据重建计算分形维数值

    Table  2.   Calculation of fractal dimension values based on N2 gas adsorption and high-pressure mercury injection data

    样品 氮气吸附实验 高压压汞实验
    D1 D2 D3
    BX7-1 抽提前 2.100 5 2.284 9 2.829
    抽提后 2.358 4 2.579 0 2.898
    BX7-2 抽提前 2.097 0 2.383 8 2.824
    抽提后 2.348 5 2.641 7 2.828
    BX7-6 抽提前 1.743 6 2.513 3 2.883
    抽提后 2.407 2 2.659 5 2.886
    BX7-11 抽提前 / / 2.844
    抽提后 / / 2.955
    BX7-15 抽提前 1.807 6 2.491 8 2.745
    抽提后 2.483 9 2.676 3 2.790
    BX7-18 抽提前 1.975 9 2.269 6 2.811
    抽提后 2.241 3 2.561 9 2.821
    BX7-25 抽提前 1.736 4 2.283 4 /
    抽提后 2.359 6 2.538 0 /
    样品 氮气吸附实验 高压压汞实验
    D1 D2 D3-1 D3-2
    BYY2-21 抽提前 1.792 1 2.258 5 2.89 2.76
    抽提后 2.386 4 2.344 1 2.96 2.89
    BYY2-90 抽提前 1.861 2 2.272 6 2.98 2.71
    抽提后 2.384 1 2.384 8 2.88 2.80
    BYY2-101 抽提前 2.033 1 2.190 0 2.77 2.84
    抽提后 2.415 1 2.345 6 2.80 2.88
    BYY2-161 抽提前 1.744 9 2.326 6 2.90 2.88
    抽提后 2.286 1 2.403 1 2.91 2.78
    下载: 导出CSV
  • [1] Chen S B, Zhu Y M, Wang H Y, et al. Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China[J]. Energy, 2011, 36: 6609-6616. doi: 10.1016/j.energy.2011.09.001
    [2] Clarkson C R, Jensen J L, Chiooerfield S. Unconventional gas reservoir evaluation: What do we have to consider?[J]. Journal of Natural Gas Science and Engineering, 2012, 8: 9-33. doi: 10.1016/j.jngse.2012.01.001
    [3] Ji L, Qiu J, Xia Y, et al. Micropore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J]. Acta Petroleum Sinica, 2012, 33(2): 249-256.
    [4] Milliken K L, Esch W L, Reed R M, et al. Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale(Mississippian), Fort Worth Basin, Texas, U.S. A[J]. AAPG Bulletin, 2012, 96: 1553-1578. doi: 10.1306/12011111129
    [5] Milliken K L, Rudnicki M, Awwiller D N, et al. Organic matter-hosted pore system, Marcellus Formation(Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97: 177-200. doi: 10.1306/07231212048
    [6] Wang P F, Jiang Z X, Chen L, et al. Pore structure characterization for the Longmaxi and Niutitang shales in the Upper Yangtze Platform, South China: Evidence from focused ion beam-He ion microscopy, nano-computerized tomography and gas adsorption analysis[J]. Marine Petroleum Geology, 2016, 77: 1323-1337. doi: 10.1016/j.marpetgeo.2016.09.001
    [7] 孙中良, 王芙蓉, 侯宇光, 等. 潜江凹陷潜江组页岩中可溶有机质赋存空间表征及影响因素分析[J]. 地质科技情报, 2019, 38(6): 81-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906011.htm

    Sun Z L, Wang F R, Hou Y G, et al. Spatial characterization and influence factors of soluble organic matter in shale of Qianjiang Formation in Qianjiang Depression[J]. Geological Science and Technology Information, 2019, 38(6): 81-90(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906011.htm
    [8] Ross D J K, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine Petroleum Geology, 2009, 26(6): 916-927. doi: 10.1016/j.marpetgeo.2008.06.004
    [9] Mastalerz M, Schimmelmann A, Drobniak A, et al. Porosity of Devonian and Mississippian New Albany shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97: 1621-1643. doi: 10.1306/04011312194
    [10] Zhao H W, Ning Z F, Zhao T Y, et al. Effects of mineralogy on petrophysical properties and permeability estimation of the Upper Triassic Yanchang tight oil sandstones in Ordos Basin, northern China[J]. Fuel, 2016, 186: 328-338. doi: 10.1016/j.fuel.2016.08.096
    [11] Mandelbrot B B. On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars[J]. Journal of Fluid Mechanics, 1975, 72(3): 401-416. doi: 10.1017/S0022112075003047
    [12] Li P, Zheng M, Bi H, et al. Pore throat structure and fractal characteristics of tight oil sandstone: A case study in the Ordos Basin, China[J]. Journal of Petroleum Science Engineering, 2017, 149: 665-674. doi: 10.1016/j.petrol.2016.11.015
    [13] Huang W, Lu S, Hersi O S, et al. Reservoir spaces in tight sandstones: Classification, fractal characters, and heterogeneity[J]. Journal of National Gas Science Engineering, 2017, 46: 80-92. doi: 10.1016/j.jngse.2017.07.006
    [14] 赵会涛, 郭英涛, 杜小伟, 等. 鄂尔多斯盆地高桥地区本溪组砂岩储层微观孔隙多重分形特征[J]. 地质科技通报, 2020, 39(6): 175-184. doi: 10.19509/j.cnki.dzkq.2020.0614

    Zhao H T, Guo Y T, Du X W, et al. Micro-pore multifractal characteristics of Benxi Formation sandstone reservoir in Gaoqiao area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 175-184(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0614
    [15] Yin T, Liu D, Cai Y, et al. Size distribution and fractal characteristics of coal pores through nuclear magnetic resonance cryoporometry[J]. Energy Fuels, 2017, 31(8): 7746-7757. doi: 10.1021/acs.energyfuels.7b00389
    [16] Lai J, Wang G. Fractal analysis of tight gas sandstones using high-pressure mercury intrusion techniques[J]. Journal of National Gas Science Engineering, 2015, 24: 185-196. doi: 10.1016/j.jngse.2015.03.027
    [17] Wang Z, Pan M, Shi Y, et al. Fractal analysis of Donghetang sandstones using NMR measurements[J]. Energy & Fuels, 2018, 32: 2973-2982.
    [18] Zhao P, Wang Z, Sun Z, et al. Investigation on the pore structure and multifractal characteristics of tight oil reservoirs using NMR measurements: Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin[J]. Marine and Petroleum Geology, 2017, 86: 1067-1081. doi: 10.1016/j.marpetgeo.2017.07.011
    [19] Jiang F J, Chen D, Chen J, et al. Fractal analysis of shale pore structure of continental gas shale reservoir in the Ordos Basin, NW China[J]. Energy Fuels, 2016, 30: 4676-4689. doi: 10.1021/acs.energyfuels.6b00574
    [20] Yang F, Ning Z F, Liu H Q. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China[J]. Fuel, 2014, 115: 378-384. doi: 10.1016/j.fuel.2013.07.040
    [21] Sun M D, Yu B S, Hu Q H, et al. Nanoscale pore characteristics of the Lower Cambrian Niutitang Formation shale: A case study from Well Yuke #1 in the Southeast of Chongqing, China[J]. International Journal of Coal Geology, 2016, 154: 16-29.
    [22] Hu Q H, Zhang Y X, Meng X H, et al. Characterization of micro-nano pore networks in shale oil reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin, East China[J]. Petoleum Exploration and Development, 2017, 44(5): 1-10.
    [23] 王国力, 杨玉卿, 张永生, 等. 江汉盆地潜江凹陷王场地区古近系潜江组沉积微相及其演变[J]. 古地理学报, 2004, 6(2): 140-150. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200402001.htm

    Wang G L, Wang Y Q, Zhang Y S, et al. Sedimentary microfacies and evolution of the Qianjiang Formation of Paleogene at Wangchang area in Qianjiang Sag, Jianghan Basin[J]. Journal of Palaeography, 2004, 6(2): 140-150(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200402001.htm
    [24] 熊智勇, 吴世强, 王洋, 等. 江汉盐湖盆地盐间泥质白云岩油藏地质特征与实践[J]. 地质科技情报, 2015, 34(2): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502027.htm

    Xiong Z Y, Wu S Q, Wang Y, et al. Geological characteristics and practice for intersalt argillaceous dolomite reservoir in the Qianjiang Depression of Jianghan Salt Lake Basin[J]. Geological Science and Technology Information, 2015, 34(2): 181-187(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502027.htm
    [25] 聂海宽, 张培先, 边瑞康, 等. 中国陆相页岩油富集特征[J]. 地学前缘, 2016, 23(2): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602009.htm

    Nie H K, Zhang P X, Bian R K, et al. Oil accumulation characteristics of China continental shale[J]. Earth Science Frontiers, 2016, 23(2): 55-62(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602009.htm
    [26] 肖枫, 张士万, 何幼斌, 等. 潜江凹陷潜三段盐间页岩油特征及油源研究[J]. 能源与环保, 2017, 39(7): 96-108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT201707018.htm

    Xiao F, Zhang S W, He Y B, et al. Geochemistry and oil-source study of inter-salt shale oil of Eq3 in Qianjiang Depression[J]. China Energy and Environmental Protection, 2017, 39(7): 96-108(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT201707018.htm
    [27] 陶国亮, 刘鹏, 钱门辉, 等. 潜江凹陷潜江组盐间页岩含油性及其勘探意义[J]. 中国矿业大学学报, 2019, 48(6): 1256-1265. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201906011.htm

    Tao G L, Liu P, Qian M H, et al. Oil-bearing characteristics and exploration significance of inter-salt shale in Qianjiang Formation, Qianjiang Depression, Jianghan Basin[J]. Journal of China University of Mining & Technology, 2019, 48(6): 1256-1265(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201906011.htm
    [28] 龙玉梅, 陈曼霏, 陈风玲, 等. 潜江凹陷潜江组盐间页岩油储层发育特征及影响因素[J]. 油气地质与采收率, 2019, 26(1): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901006.htm

    Long Y M, Chen M F, Chen F L, et al. Characteristics and influencing factors of inter-salt shale oil reservoirs in Qianjiang Formation, Qianjiang Sag[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 59-64(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901006.htm
    [29] 徐二社, 陶国亮, 李志明, 等. 江汉盆地潜江凹陷盐间页岩油储层不同岩相微观储集特征: 以古近系潜江组三段4亚段10韵律为例[J]. 石油实验地质, 2020, 42(2): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202002006.htm

    Xu E S, Tao G L, Li Z M, et al. Microscopic reservoir characteristics of different lithofacies from inter-salt shale oil reservoir in Qianjiang Sag, Jianghan Basin: A case study of Paleogene Eq34-10 rhythm[J]. Petroleum Geology & Experiment, 2020, 42(2): 193-201(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202002006.htm
    [30] 徐崇凯, 刘池洋, 郭佩, 等. 潜江凹陷古近系潜江组盐间泥岩地球化学特征及地质意义[J]. 沉积学报, 2018, 36(3): 617-629. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201803017.htm

    Xu C K, Liu C Y, Guo P, et al. Geochemical characteristics and their geological significance of intrasalt mudstones from the Paleogene Qianjiang Formation in the Qianjiang Graben, Jianghan Basin, China[J]. Acta Sedimentologica Sinica, 2018, 36(3): 617-629(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201803017.htm
    [31] 刘刚, 周东升. 微量元素分析在判别沉积环境中的应用: 以江汉盆地潜江组为例[J]. 石油实验地质, 2007, 29(2): 307-310. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200703016.htm

    Liu G, Zhou D S. Application of microelements analysis in identifying sediment environment: Taking Qianjiang Formation in the Jianghan Basin as an example[J]. Petroleum Geology & Experiment, 2007, 29(2): 307-310(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200703016.htm
    [32] 戴世昭. 江汉盐湖盆地石油地质[M]. 北京: 石油工业出版社, 1997: 57-108.

    Dai S Z. Petroleum geology of Jianghan Salt Lake Basin[M]. Beijing: Petroleum Industry Press, 1997: 57-108(in Chinese).
    [33] 王芙蓉, 何生, 郑有恒, 等. 江汉盆地潜江凹陷潜江组盐间页岩油储层矿物组成与脆性特征研究[J]. 石油实验地质, 2016, 38(2): 211-218. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201602011.htm

    Wang F R, He S, Zheng Y H, et al. Mineral composition and brittleness characteristics of the inter-salt shale oil reservoirs in the Qianjiang Formation, Qianjiang Sag[J]. Petroleum Geology & Experiment, 2016, 38(2): 211-218(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201602011.htm
    [34] Pfeifer P, Avnir D. Chemistry in noninteger dimensions between two and three[J]. Journal of Chemical Physics, 1983, 79(7), 3369-3558.
    [35] Liu X J, Xiong J, Liang L X. Investigation of pore structure and fractal characteristics of organic rich Yanchang Formation shale in central China by nitrogen adsorption/desorption analysis[J]. Journal of National Gas Science Engineering, 2015, 22: 62-72.
    [36] Li Z Q, Shen X, Qi Z Y, et al. Study on the pore structure and fractal characteristics of marine and continental shale based on mercury porosimetry, N2 adsorption and NMR methods[J]. Journal of Natural Gas Science and Engineering, 2018, 53: 12-21.
    [37] Khalili N R, Pan M, Sandí G. Determination of fractal dimension of solid carbons from gas and liquid phase adsorption isotherms[J]. Carbon, 2000, 38: 573-588.
    [38] Sing K S W. Characterization of porous materials: Past, present and future[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2004, 241(1/3): 3-7.
    [39] Yao Y B, Liu D M, Tang D Z, et al. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals[J]. Science Direct, 2008, 73: 27-42.
    [40] Brunauer S, Emmett P H, Teller E. On a theory of the van der waals adsorption of gases[J]. American Chemical Society, 1940, 62(7): 1723-1732.
    [41] Giri A, Tarafdar S, Gouze P, et al. Fractal pore structure of sedimentary rocks: Simulation in 2-D using a relaxed bidisperse ballistic deposition model[J]. Journal of Applied Geophysics, 2012, 87: 40-45.
    [42] Petrov O V, Furó I. NMR cryoporometry: Principles, applications and potential[J]. Nuclear Magnetic Resonance Spectrometer, 2009, 54: 97-122.
    [43] Sun Z L, He Z L, Wang F R, et al. Occurrence characteristics of saline-lacustrine shale-oil in the Qianjiang Depression, Jianghan Basin, Central China[J/OL]. Journal of Earth Science, 2020. [2020-10-2](2021-01-21). https://kns.cnki.net/kcms/detail/42.1788.P.20201027.1150.006.html.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  500
  • PDF下载量:  248
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-21
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回