Migration mechanism of nanoplastic particles in saturated porous media
-
摘要:
针对纳米塑料颗粒在饱和多孔介质中的迁移及其影响因素, 以纳米聚苯乙烯(PSNPs)作为典型纳米塑料颗粒, 通过实验和理论相结合的方法研究纳米塑料颗粒的迁移规律。以经典DLVO理论计算出PSNPs与石英砂颗粒之间的相互作用能, 分析预测PSNPs与石英砂之间的吸附、聚沉。在柱实验中, 以石英砂作为多孔介质填充到砂柱中, 让PSNPs在一维饱和砂柱中迁移, 研究不同条件下PSNPs的迁移行为和影响因素。结果表明, 当离子强度由1 mmol/L增至50 mmol/L(电解质为NaCl), PSNPs与石英砂颗粒之间的相互作用能的势垒则从215.13 KT逐渐降低至45.9 KT使得PSNPs更易于吸附在石英砂介质表面, 从而降低PSNPs在多孔介质中的迁移能力, PSNPs的穿透率由62.16%降至3.65%。当离子强度由0.1 mmol/L增至5 mmol/L(电解质为CaCl2)时, 势垒则由33.72 KT降至14.03 KT, PSNPs的穿透率从82.46%降至4.27%。这些实验现象说明增加离子强度对PSNPs的穿透起到抑制作用, 且Ca2+比Na+具有更强的电荷屏蔽作用。同时提高PSNPs的初始浓度、流速和介质粒径均可增大PSNPs的穿透率, 而大粒径PNSPs颗粒的穿透率则较小。研究中构建了PSNPs实际运移与理论之间的关系, 进一步推进PSNPs的环境行为和机理研究, 为系统全面评价纳米塑料颗粒在土壤-地下水中的环境风险和生态安全提供科学依据。
Abstract:To investigate the migration of nanoplastic particles in saturated porous media and the associated influencing factors, polystyrene nanoparticles (PSNPs) are selected as typical nanoplastics in this study. The migration behavior and mechanism of PSNPs in saturated porous media is investigated through a combination of physical experiments and DLVO theory. First, the interaction energy between PSNPs and quartz sand particles is calculated based on DLVO theory, and then a column experiment is conducted to investigate the characteristics of PSNP migration in porous media under different conditions.According to the experimental results, when the ionic strength (NaCl) increases from 1 mmol/L to 50 mmol/L, the value of the energy barrier between PSNPs and quartz sand based on DLVO theory gradually decreases from 215.13 KT to 45.9 KT. PSNPs are easier to be adsorbed on the surface of quartz sand media, thereby reducing the migration ability of PSNPs in porous media, the penetration rate consequently decreases from 62.16% to 3.65%. When the ionic strength (CaCl2) increases from 0.1 mmol/L to 5 mmol/L, the value of the energy barrier decreases from 33.72 KT to 14.03 KT, and the penetration rate decreases from 82.46% to 4.27%. These experimental phenomena indicate that increasing the ionic strength can inhibit the penetration of PSNPs, and Ca2+ has a stronger charge shielding effect than Na+. At the same time, increasing the initial concentration, flow rate and particle size of the medium can increase the penetration rate of PSNPs, while the penetration rate of large-diameter PNSPs particles is smaller. The implementation of this research will contribute to further understanding the environmental behavior and risks of nanoplastics in porous media and provide a scientific basis for accurately predicting and assessing the environmental risks of nanoplastics in soil-groundwater systems.
-
Key words:
- nanoplastic /
- porous media /
- migration /
- DLVO theory /
- experiment
-
图 3 NaCl溶液中介质与PSNPs的势能计算(a)、NaCl溶液中PSNPs与PSNPs的势能计算(b)、CaCl2溶液中介质与PSNPs的势能计算(c)和CaCl2溶液中PSNPs与PSNPs的势能计算(d)
Figure 3. (a) Estimationof DLVO potential energy between medium and PSNPs in NaCl solution; (b) Estimationof DLVO potential energy between PSNPs and PSNPs in NaCl solution; (c) Estimationof DLVO potential energy between medium and PSNPs in CaCl2 solution; (d) Estimationof DLVO potential energy between PSNPs and PSNPs in CaCl2 solution
表 1 PSNPs和石英砂在不同条件下的Zeta值和粒径值
Table 1. Zeta potential and particle size of PSNPs and quartz sand under various conditions
离子类型 离子强度/ (mmol· L-1) Zeta电位/mV PSNPs粒径/ nm PSNPs-介质 介质 PSNPs 能量势垒/ KT 能量势阱/ KT NaCl 0.1 -55.13 -46.15 27.16 115.42 - 0.1 -55.13 -48.35 51.11 226.32 - 0.1 -55.13 -50.89 108.61 502.94 - 1.0 -54.98 -48.02 51.95 215.13 - 5.0 -47.57 -39.74 53.17 141.73 -0.09 10.0 -46.14 -35.74 55.74 117.42 -0.24 50.0 -34.59 -29.50 56.65 45.90 -0.83 CaCl2 0.1 -22.26 -17.07 55.34 33.72 0.27 0.5 -18.59 -16.43 56.01 23.97 0.11 1.0 -17.10 -14.30 58.10 14.28 0.02 5.0 -15.96 -12.21 60.30 14.030 0.01 注:Zeta电位利用马尔文激光粒度仪(Zetasiser Nono ZS90)在25℃(±1℃)下测量,用滴管取至少1 mL样品,缓慢注入样品池并与其一端连接,测试单位为易析科技(广州)有限公司;PSNPs粒径利用马尔文激光粒度仪(Zetasiser Nono ZS90)在25℃(±1℃)下测量,缓慢注入溶液至样品池,装至15~20 mm之间后测量,测试单位为易析科技(广州)有限公司 表 2 PSNPs在饱和石英砂柱中运移行为的数值模拟结果
Table 2. Numerical simulation of PSNPs migration in a saturated quartz sand column
序号 介质粒径/mm PSNPs粒径/nm 离子强度/ (mmol·L-1) 电解质 初始浓度/ (mg·L-1) 流速/ (mL·min-1) 穿透率/% NaCl CaCl2 1 0.425~0.50 60~65 0 0 0 50 1.0 83.19 2 0.425~0.50 60~65 0 0 0 100 1.0 92.95 3 0.425~0.50 60~65 0 0 0 200 1.0 98.92 4 0.425~0.50 60~65 0 0 0 100 0.1 79.84 5 0.425~0.50 60~65 0 0 0 100 0.5 89.62 6 0.425~0.50 60~65 1.0 1 0 100 1.0 62.16 7 0.425~0.50 60~65 5.0 5 0 100 1.0 61.24 8 0.425~0.50 60~65 10.0 10 0 100 1.0 55.32 9 0.425~0.50 60~65 50.0 50 0 100 1.0 3.65 10 0.425~0.50 60~65 0.1 0 0.1 100 1.0 82.46 11 0.425~0.50 60~65 0.5 0 0.5 100 1.0 18.92 12 0.425~0.50 60~65 1.0 0 1.0 100 1.0 11.03 13 0.425~0.50 60~65 5.0 0 5.0 100 1.0 4.27 14 0.710~0.85 60~65 0 0 0 100 1.0 97.39 15 0.150~0.18 60~65 0 0 0 100 1.0 29.30 16 0.425~0.50 20~25 0 0 0 100 1.0 98.16 17 0.425~0.50 90~95 0 0 0 100 1.0 78.38 -
[1] Napper I E, Bakir A, Rowland S J, et al. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics[J]. Marine Pollution Bulletin, 2015, 99(1/2): 178-185. [2] Browne M A, Galloway T S, Thompson R C. Spatial patterns of plastic debris along estuarine shorelines[J]. Environmental Science & Technology, 2010, 44(9): 3404-3409. [3] deSá L C, Oliveira M, Ribeiro F, et al. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future?[J]. Science of the Total Environment, 2018, 645: 1029-1039. doi: 10.1016/j.scitotenv.2018.07.207 [4] Andrady A L. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8): 1596-1605. doi: 10.1016/j.marpolbul.2011.05.030 [5] Galloway T S, Matthew C, Ceri L. Interactions of microplastic debris throughout the marine ecosystem[J]. Nature Ecology & Evolution, 2017, 1(5): 116. [6] William J S, Mick C, Isabelle M C, et al. A horizon scan of global conservation issues for 2010[J]. Trends in Ecology & Evolution, 2010, 25(1): 81-90. [7] Cózar A, Echevarría F, González-Gordillo J I, et al. Plastic debris in the open ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10239-10244. doi: 10.1073/pnas.1314705111 [8] Cózar A, Martí E, Duarte C M, et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the thermohaline circulation[J]. Science Advances, 2017, 3(4): 1600582. doi: 10.1126/sciadv.1600582 [9] Lebreton C M, van der Zwet J, Damsteeg J, et al. River plastic emissions to the world's oceans[J]. Nature Communications, 2017, 8(1): 1985-1998. doi: 10.1038/s41467-017-02083-1 [10] Woodall L C, Anna S, Miquel C, et al. The deep sea is a major sink for microplastic debris[J]. Royal Society Open Science, 2014, 1(4): 140317. doi: 10.1098/rsos.140317 [11] 王焰新, 甘义群, 邓娅敏, 等. 海岸带海陆交互作用过程及其生态环境效应研究进展[J]. 地质科技通报, 2020, 39(1): 1-10. doi: 10.19509/j.cnki.dzkq.2020.0101Wang Y X, Gan Y Q, Deng Y M, et al. Land-ocean interactions and their eco-environmental effects in the coastal zone: Current progress and future perspectives[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 1-10(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0101 [12] Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, 304(5672): 838. doi: 10.1126/science.1094559 [13] Ling L, Kexin X, Bowen Z, et al. Cellular internalization and release of polystyrene microplastics and nanoplastics[J]. The Science of the Total Environment, 2021, 779: 146523. doi: 10.1016/j.scitotenv.2021.146523 [14] Velzeboer I, Kwadijk C J, Koelmans A A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes[J]. Environmental Science & Technology, 2014, 48(9): 4869-4876. [15] Manish K, Hongyu C, Surendra S, et al. Current research trends on micro- and nano-plastics as an emerging threat to global environment: A review[J]. Journal of Hazardous Materials, 2021, 409: 124967. doi: 10.1016/j.jhazmat.2020.124967 [16] Bläsing M, Amelung W. Plastics in soil: Analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612: 422-435. doi: 10.1016/j.scitotenv.2017.08.086 [17] Fermín P, Gurusamy K, Shruti V C. Critical review on microplastics in fecal matter: Research progress, analytical methods and future outlook[J]. The Science of the Total Environment, 2021, 778: 146395-146395. doi: 10.1016/j.scitotenv.2021.146395 [18] Michael S, Moritz B. Microplastics in Swiss floodplain soils[J]. Environmental Science & Technology, 2018, 52(6): 3591-3598. [19] Zhang G S, Liu Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. The Science of the Total Environment, 2018, 642: 12-20. doi: 10.1016/j.scitotenv.2018.06.004 [20] Chae Y, An Y. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review[J]. Environmental Pollution, 2018, 240: 387-395. doi: 10.1016/j.envpol.2018.05.008 [21] Rillig M C, Ziersch L, Hempel S. Microplastic transport in soil by earthworms[J]. Scientific Reports, 2017, 7(1): 2588-2597. doi: 10.1038/s41598-017-02620-4 [22] Bradford S A, Yates S R, Bettahar M, et al. Physical factors affecting the transport and fate of colloids in saturated porous media[J]. Water Resources, 2002, 38(12): 1327. [23] Bradford S A, Torkzaban S, Walker S L. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media[J]. Water Research, 2007, 41(13): 3012-3024. doi: 10.1016/j.watres.2007.03.030 [24] Sasidharan S, Torkzaban S, Bradford S A, et al. Coupled effects of hydrodynamic and solution chemistry on long-term nanoparticle transport and deposition in saturated porous media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457: 169-179. [25] Dong Z, Qiu Y, Zhang W, et al. Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater[J]. Water Research, 2018, 143: 518-526. doi: 10.1016/j.watres.2018.07.007 [26] Song Z F, Yang X Y, Chen F M, et al. Fate and transport of nanoplastics in complex natural aquifer media: Effect of particle size and surface functionalization[J]. The Science of the Total Environment, 2019, 669: 120-128 doi: 10.1016/j.scitotenv.2019.03.102 [27] Zhao G L, Wu Y. Study on transport mechanism of microplastics in vertically fixed porous media[J]. Advances in Environmental Protection, 2020, 10(3): 382-387. doi: 10.12677/AEP.2020.103044 [28] 谢先军, 刘红杏, 高爽, 等. 典型纳污坑塘周边地下水污染来源识别及其健康风险评估[J]. 地质科技通报, 2020, 39(1): 34-42. doi: 10.19509/j.cnki.dzkq.2020.0104Xie X J, Liu H X, Gao S, et al. Source identification and health risk assessment of groundwater pollution in typical sewage pits and ponds[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 34-42(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0104 [29] Jie Z, Jun Q, Yan J. Retention and transport of amphiphilic colloids under unsaturated flow conditions: Effect of particle size and surface property[J]. Environmental Science & Technology, 2005, 39(20): 7853-7859. [30] Nathalie T, Menachem E. Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 2004, 20(25): 10818-10828. doi: 10.1021/la0486638 [31] John G. Approximate expressions for retarded vander waals interaction[J]. Journal of Couoid and Infortace Science, 1981, 83(1): 138-145. [32] Wu H, Fang H, Xu C, et al. Transport and retention of copper oxide nanoparticles under unfavorable deposition conditions caused by repulsive van der Waals force in saturated porous media[J]. Environmental Pollution, 2020, 256: 113400. doi: 10.1016/j.envpol.2019.113400 [33] Sun P, Shijirbaatar A, Fang J, et al. Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns[J]. Science of the Total Environment, 2015, 505: 189-198. doi: 10.1016/j.scitotenv.2014.09.095 [34] Fan W, Jiang X H, Yang W, et al. Transport of graphene oxide in saturated porous media: Effect of cation composition in mixed Na-Ca electrolyte systems[J]. Science of the Total Environment, 2015, 511: 509-515. doi: 10.1016/j.scitotenv.2014.12.099 [35] 孙慧敏, 殷宪强, 王益权. pH对黏土矿物胶体在饱和多孔介质中运移的影响[J]. 环境科学学报, 2012, 32(2): 419-424.Sun H M, Yin X Q, Wang Y Q. The effect of pH on the transport of clay mineral colloid in saturated porous media[J]. Acta Scientiae Circumstantiae, 2012, 32(2): 419-424(in Chinese with English abstract). [36] 张博文. 多分散胶体迁移过程中胶体粒径比与浓度的影响研究[D]. 沈阳: 沈阳大学, 2018.Zhang B W. Study on the effect of colloidal particle size ratio and concentration on polymeric colloid transport[D]. Shenyang: Shenyang University, 2018(in Chinese with English abstract). [37] Wei X, Shao M, Du L, et al. Humic acid transport in saturated porous media: Influence of flow velocity and influent concentration[J]. Journal of Environmental Sciences, 2014, 26(12): 2554-2561. doi: 10.1016/j.jes.2014.06.034 [38] Li S, Liu H, Gao R, et al. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter[J]. Environmental Pollution, 2018, 237: 126-132. doi: 10.1016/j.envpol.2018.02.042