留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米塑料颗粒在饱和多孔介质中的迁移规律

叶芯瑶 吴鸣 胡晓农 程洲 莫测辉

叶芯瑶, 吴鸣, 胡晓农, 程洲, 莫测辉. 纳米塑料颗粒在饱和多孔介质中的迁移规律[J]. 地质科技通报, 2022, 41(4): 225-233. doi: 10.19509/j.cnki.dzkq.2021.0064
引用本文: 叶芯瑶, 吴鸣, 胡晓农, 程洲, 莫测辉. 纳米塑料颗粒在饱和多孔介质中的迁移规律[J]. 地质科技通报, 2022, 41(4): 225-233. doi: 10.19509/j.cnki.dzkq.2021.0064
Ye Xinyao, Wu Ming, Hu Xiaonong, Cheng Zhou, Mo Cehui. Migration mechanism of nanoplastic particles in saturated porous media[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 225-233. doi: 10.19509/j.cnki.dzkq.2021.0064
Citation: Ye Xinyao, Wu Ming, Hu Xiaonong, Cheng Zhou, Mo Cehui. Migration mechanism of nanoplastic particles in saturated porous media[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 225-233. doi: 10.19509/j.cnki.dzkq.2021.0064

纳米塑料颗粒在饱和多孔介质中的迁移规律

doi: 10.19509/j.cnki.dzkq.2021.0064
基金项目: 

国家自然科学基金项目 41902246

广东省自然科学基金项目 2020A1515010447

详细信息
    作者简介:

    叶芯瑶(1997—),女,现正攻读环境工程专业硕士学位,主要从事地下水污染的研究工作。E-mail: 3212435673@qq.com

    通讯作者:

    吴鸣(1989—),男,副教授,主要从事地下水污染与防治研究工作。E-mail: wumingnj@foxmail.com

  • 中图分类号: X131

Migration mechanism of nanoplastic particles in saturated porous media

  • 摘要:

    针对纳米塑料颗粒在饱和多孔介质中的迁移及其影响因素, 以纳米聚苯乙烯(PSNPs)作为典型纳米塑料颗粒, 通过实验和理论相结合的方法研究纳米塑料颗粒的迁移规律。以经典DLVO理论计算出PSNPs与石英砂颗粒之间的相互作用能, 分析预测PSNPs与石英砂之间的吸附、聚沉。在柱实验中, 以石英砂作为多孔介质填充到砂柱中, 让PSNPs在一维饱和砂柱中迁移, 研究不同条件下PSNPs的迁移行为和影响因素。结果表明, 当离子强度由1 mmol/L增至50 mmol/L(电解质为NaCl), PSNPs与石英砂颗粒之间的相互作用能的势垒则从215.13 KT逐渐降低至45.9 KT使得PSNPs更易于吸附在石英砂介质表面, 从而降低PSNPs在多孔介质中的迁移能力, PSNPs的穿透率由62.16%降至3.65%。当离子强度由0.1 mmol/L增至5 mmol/L(电解质为CaCl2)时, 势垒则由33.72 KT降至14.03 KT, PSNPs的穿透率从82.46%降至4.27%。这些实验现象说明增加离子强度对PSNPs的穿透起到抑制作用, 且Ca2+比Na+具有更强的电荷屏蔽作用。同时提高PSNPs的初始浓度、流速和介质粒径均可增大PSNPs的穿透率, 而大粒径PNSPs颗粒的穿透率则较小。研究中构建了PSNPs实际运移与理论之间的关系, 进一步推进PSNPs的环境行为和机理研究, 为系统全面评价纳米塑料颗粒在土壤-地下水中的环境风险和生态安全提供科学依据。

     

  • 图 1  一维砂柱实验装置示意图

    Figure 1.  One-dimensional sand column experimental installation

    图 2  石英砂扫描电镜图(a, b)和PSNPs扫描电镜图(c, d)

    Figure 2.  Scanning electron microscopy(SEM) of quartz sand (a, b) and scanning electron microscopy (SEM) of PSNPs (c, d)

    图 3  NaCl溶液中介质与PSNPs的势能计算(a)、NaCl溶液中PSNPs与PSNPs的势能计算(b)、CaCl2溶液中介质与PSNPs的势能计算(c)和CaCl2溶液中PSNPs与PSNPs的势能计算(d)

    Figure 3.  (a) Estimationof DLVO potential energy between medium and PSNPs in NaCl solution; (b) Estimationof DLVO potential energy between PSNPs and PSNPs in NaCl solution; (c) Estimationof DLVO potential energy between medium and PSNPs in CaCl2 solution; (d) Estimationof DLVO potential energy between PSNPs and PSNPs in CaCl2 solution

    图 4  不同浓度条件下(a)和不同流速条件下的PSNPs穿透曲线(b)

    Figure 4.  Breakthrough curves(BTCs) of PSNPs under different concentration conditions(a) and under different flow rate conditions (b)

    图 5  不同PSNPs粒径条件下(a)和不同介质粒径条件下(b)的穿透曲线

    Figure 5.  BTCs under different PSNPs particle size conditions(a) and under different media particle size conditions(b)

    图 6  NaCl条件下(a)和CaCl2条件下(b)的PSNPs穿透曲线

    Figure 6.  BTCs of PSNPs under different NaCl concentration(a) and under different CaCl2 conditions(b)

    表  1  PSNPs和石英砂在不同条件下的Zeta值和粒径值

    Table  1.   Zeta potential and particle size of PSNPs and quartz sand under various conditions

    离子类型 离子强度/ (mmol· L-1) Zeta电位/mV PSNPs粒径/ nm PSNPs-介质
    介质 PSNPs 能量势垒/ KT 能量势阱/ KT
    NaCl 0.1 -55.13 -46.15 27.16 115.42 -
    0.1 -55.13 -48.35 51.11 226.32 -
    0.1 -55.13 -50.89 108.61 502.94 -
    1.0 -54.98 -48.02 51.95 215.13 -
    5.0 -47.57 -39.74 53.17 141.73 -0.09
    10.0 -46.14 -35.74 55.74 117.42 -0.24
    50.0 -34.59 -29.50 56.65 45.90 -0.83
    CaCl2 0.1 -22.26 -17.07 55.34 33.72 0.27
    0.5 -18.59 -16.43 56.01 23.97 0.11
    1.0 -17.10 -14.30 58.10 14.28 0.02
    5.0 -15.96 -12.21 60.30 14.030 0.01
    注:Zeta电位利用马尔文激光粒度仪(Zetasiser Nono ZS90)在25℃(±1℃)下测量,用滴管取至少1 mL样品,缓慢注入样品池并与其一端连接,测试单位为易析科技(广州)有限公司;PSNPs粒径利用马尔文激光粒度仪(Zetasiser Nono ZS90)在25℃(±1℃)下测量,缓慢注入溶液至样品池,装至15~20 mm之间后测量,测试单位为易析科技(广州)有限公司
    下载: 导出CSV

    表  2  PSNPs在饱和石英砂柱中运移行为的数值模拟结果

    Table  2.   Numerical simulation of PSNPs migration in a saturated quartz sand column

    序号 介质粒径/mm PSNPs粒径/nm 离子强度/ (mmol·L-1) 电解质 初始浓度/ (mg·L-1) 流速/ (mL·min-1) 穿透率/%
    NaCl CaCl2
    1 0.425~0.50 60~65 0 0 0 50 1.0 83.19
    2 0.425~0.50 60~65 0 0 0 100 1.0 92.95
    3 0.425~0.50 60~65 0 0 0 200 1.0 98.92
    4 0.425~0.50 60~65 0 0 0 100 0.1 79.84
    5 0.425~0.50 60~65 0 0 0 100 0.5 89.62
    6 0.425~0.50 60~65 1.0 1 0 100 1.0 62.16
    7 0.425~0.50 60~65 5.0 5 0 100 1.0 61.24
    8 0.425~0.50 60~65 10.0 10 0 100 1.0 55.32
    9 0.425~0.50 60~65 50.0 50 0 100 1.0 3.65
    10 0.425~0.50 60~65 0.1 0 0.1 100 1.0 82.46
    11 0.425~0.50 60~65 0.5 0 0.5 100 1.0 18.92
    12 0.425~0.50 60~65 1.0 0 1.0 100 1.0 11.03
    13 0.425~0.50 60~65 5.0 0 5.0 100 1.0 4.27
    14 0.710~0.85 60~65 0 0 0 100 1.0 97.39
    15 0.150~0.18 60~65 0 0 0 100 1.0 29.30
    16 0.425~0.50 20~25 0 0 0 100 1.0 98.16
    17 0.425~0.50 90~95 0 0 0 100 1.0 78.38
    下载: 导出CSV
  • [1] Napper I E, Bakir A, Rowland S J, et al. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics[J]. Marine Pollution Bulletin, 2015, 99(1/2): 178-185.
    [2] Browne M A, Galloway T S, Thompson R C. Spatial patterns of plastic debris along estuarine shorelines[J]. Environmental Science & Technology, 2010, 44(9): 3404-3409.
    [3] deSá L C, Oliveira M, Ribeiro F, et al. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future?[J]. Science of the Total Environment, 2018, 645: 1029-1039. doi: 10.1016/j.scitotenv.2018.07.207
    [4] Andrady A L. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8): 1596-1605. doi: 10.1016/j.marpolbul.2011.05.030
    [5] Galloway T S, Matthew C, Ceri L. Interactions of microplastic debris throughout the marine ecosystem[J]. Nature Ecology & Evolution, 2017, 1(5): 116.
    [6] William J S, Mick C, Isabelle M C, et al. A horizon scan of global conservation issues for 2010[J]. Trends in Ecology & Evolution, 2010, 25(1): 81-90.
    [7] Cózar A, Echevarría F, González-Gordillo J I, et al. Plastic debris in the open ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10239-10244. doi: 10.1073/pnas.1314705111
    [8] Cózar A, Martí E, Duarte C M, et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the thermohaline circulation[J]. Science Advances, 2017, 3(4): 1600582. doi: 10.1126/sciadv.1600582
    [9] Lebreton C M, van der Zwet J, Damsteeg J, et al. River plastic emissions to the world's oceans[J]. Nature Communications, 2017, 8(1): 1985-1998. doi: 10.1038/s41467-017-02083-1
    [10] Woodall L C, Anna S, Miquel C, et al. The deep sea is a major sink for microplastic debris[J]. Royal Society Open Science, 2014, 1(4): 140317. doi: 10.1098/rsos.140317
    [11] 王焰新, 甘义群, 邓娅敏, 等. 海岸带海陆交互作用过程及其生态环境效应研究进展[J]. 地质科技通报, 2020, 39(1): 1-10. doi: 10.19509/j.cnki.dzkq.2020.0101

    Wang Y X, Gan Y Q, Deng Y M, et al. Land-ocean interactions and their eco-environmental effects in the coastal zone: Current progress and future perspectives[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 1-10(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0101
    [12] Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, 304(5672): 838. doi: 10.1126/science.1094559
    [13] Ling L, Kexin X, Bowen Z, et al. Cellular internalization and release of polystyrene microplastics and nanoplastics[J]. The Science of the Total Environment, 2021, 779: 146523. doi: 10.1016/j.scitotenv.2021.146523
    [14] Velzeboer I, Kwadijk C J, Koelmans A A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes[J]. Environmental Science & Technology, 2014, 48(9): 4869-4876.
    [15] Manish K, Hongyu C, Surendra S, et al. Current research trends on micro- and nano-plastics as an emerging threat to global environment: A review[J]. Journal of Hazardous Materials, 2021, 409: 124967. doi: 10.1016/j.jhazmat.2020.124967
    [16] Bläsing M, Amelung W. Plastics in soil: Analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612: 422-435. doi: 10.1016/j.scitotenv.2017.08.086
    [17] Fermín P, Gurusamy K, Shruti V C. Critical review on microplastics in fecal matter: Research progress, analytical methods and future outlook[J]. The Science of the Total Environment, 2021, 778: 146395-146395. doi: 10.1016/j.scitotenv.2021.146395
    [18] Michael S, Moritz B. Microplastics in Swiss floodplain soils[J]. Environmental Science & Technology, 2018, 52(6): 3591-3598.
    [19] Zhang G S, Liu Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. The Science of the Total Environment, 2018, 642: 12-20. doi: 10.1016/j.scitotenv.2018.06.004
    [20] Chae Y, An Y. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review[J]. Environmental Pollution, 2018, 240: 387-395. doi: 10.1016/j.envpol.2018.05.008
    [21] Rillig M C, Ziersch L, Hempel S. Microplastic transport in soil by earthworms[J]. Scientific Reports, 2017, 7(1): 2588-2597. doi: 10.1038/s41598-017-02620-4
    [22] Bradford S A, Yates S R, Bettahar M, et al. Physical factors affecting the transport and fate of colloids in saturated porous media[J]. Water Resources, 2002, 38(12): 1327.
    [23] Bradford S A, Torkzaban S, Walker S L. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media[J]. Water Research, 2007, 41(13): 3012-3024. doi: 10.1016/j.watres.2007.03.030
    [24] Sasidharan S, Torkzaban S, Bradford S A, et al. Coupled effects of hydrodynamic and solution chemistry on long-term nanoparticle transport and deposition in saturated porous media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457: 169-179.
    [25] Dong Z, Qiu Y, Zhang W, et al. Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater[J]. Water Research, 2018, 143: 518-526. doi: 10.1016/j.watres.2018.07.007
    [26] Song Z F, Yang X Y, Chen F M, et al. Fate and transport of nanoplastics in complex natural aquifer media: Effect of particle size and surface functionalization[J]. The Science of the Total Environment, 2019, 669: 120-128 doi: 10.1016/j.scitotenv.2019.03.102
    [27] Zhao G L, Wu Y. Study on transport mechanism of microplastics in vertically fixed porous media[J]. Advances in Environmental Protection, 2020, 10(3): 382-387. doi: 10.12677/AEP.2020.103044
    [28] 谢先军, 刘红杏, 高爽, 等. 典型纳污坑塘周边地下水污染来源识别及其健康风险评估[J]. 地质科技通报, 2020, 39(1): 34-42. doi: 10.19509/j.cnki.dzkq.2020.0104

    Xie X J, Liu H X, Gao S, et al. Source identification and health risk assessment of groundwater pollution in typical sewage pits and ponds[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 34-42(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0104
    [29] Jie Z, Jun Q, Yan J. Retention and transport of amphiphilic colloids under unsaturated flow conditions: Effect of particle size and surface property[J]. Environmental Science & Technology, 2005, 39(20): 7853-7859.
    [30] Nathalie T, Menachem E. Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 2004, 20(25): 10818-10828. doi: 10.1021/la0486638
    [31] John G. Approximate expressions for retarded vander waals interaction[J]. Journal of Couoid and Infortace Science, 1981, 83(1): 138-145.
    [32] Wu H, Fang H, Xu C, et al. Transport and retention of copper oxide nanoparticles under unfavorable deposition conditions caused by repulsive van der Waals force in saturated porous media[J]. Environmental Pollution, 2020, 256: 113400. doi: 10.1016/j.envpol.2019.113400
    [33] Sun P, Shijirbaatar A, Fang J, et al. Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns[J]. Science of the Total Environment, 2015, 505: 189-198. doi: 10.1016/j.scitotenv.2014.09.095
    [34] Fan W, Jiang X H, Yang W, et al. Transport of graphene oxide in saturated porous media: Effect of cation composition in mixed Na-Ca electrolyte systems[J]. Science of the Total Environment, 2015, 511: 509-515. doi: 10.1016/j.scitotenv.2014.12.099
    [35] 孙慧敏, 殷宪强, 王益权. pH对黏土矿物胶体在饱和多孔介质中运移的影响[J]. 环境科学学报, 2012, 32(2): 419-424.

    Sun H M, Yin X Q, Wang Y Q. The effect of pH on the transport of clay mineral colloid in saturated porous media[J]. Acta Scientiae Circumstantiae, 2012, 32(2): 419-424(in Chinese with English abstract).
    [36] 张博文. 多分散胶体迁移过程中胶体粒径比与浓度的影响研究[D]. 沈阳: 沈阳大学, 2018.

    Zhang B W. Study on the effect of colloidal particle size ratio and concentration on polymeric colloid transport[D]. Shenyang: Shenyang University, 2018(in Chinese with English abstract).
    [37] Wei X, Shao M, Du L, et al. Humic acid transport in saturated porous media: Influence of flow velocity and influent concentration[J]. Journal of Environmental Sciences, 2014, 26(12): 2554-2561. doi: 10.1016/j.jes.2014.06.034
    [38] Li S, Liu H, Gao R, et al. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter[J]. Environmental Pollution, 2018, 237: 126-132. doi: 10.1016/j.envpol.2018.02.042
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  1
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-13
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回