Determining method of multiscale fractal dimension of red bed sandstone pores based on CT scanning
-
摘要:
岩石作为一种典型的多孔介质,其内部孔隙结构、形态特征极为复杂,运用常规线性系统内参数描述较为困难,因而采用非线性系统内分形维数这一参数来定量表征孔隙结构的非线性分布特征较为合适。岩石内部孔隙结构分布具有统计意义上的分形特征,因此分形维数的确定对于定量表征孔隙结构分布规律,以及揭示岩石各种力学行为与物理力学指标有着重要意义。将图像处理与阈值分割、分形理论和数理统计相结合,针对CT扫描切片图像,三维重建孔隙结构空间分布模型,计算Hausdorff测度空间下孔隙结构分布盒维数与集束维数。同时,针对孔隙结构空间分布复杂程度的定量表征,提出体素盒维数与圆柱体空间集束维数假想,并通过多种数理统计方法进行假设检验。最后,指出孔隙结构分布是一种多标度分形模型,仅仅单个维数无法描述其全部细节特征,需采用多重分形谱来更为全面表征孔隙分布的细观特征。研究结果表明,Hausdorff测度空间下的平面盒维数可较为全面表征平面孔隙分布特征,但对于针对灰度CT图像构建的体素盒维数可替代传统意义下定义的盒维数,在细观尺度下能更可靠、准确、全面地定量表征孔隙体积分布规律; 集束维数实质是用来定量表征孔隙位置分布规律,若等于欧氏维数,则表明孔隙位置分布具有随机性。
Abstract:The distribution of pore structure inside rock has fractal characteristics in statistical sense, the determination of itsfractal dimension is of great significance to characterize the distribution law of pore structure quantitatively and reveal various mechanical behaviors and physical and mechanical indexes of rock.By combining image processing, fractal theory and mathematical statistics, the spatial distribution model of three-dimensional pore structure was reconstructed based on CT scan slice images, and the distribution box dimension and cluster dimension of pore structure in Hausdorff measure space were calculated. In order to quantitatively characterize the spatial complexity of pore structure distribution, the hypothesis of voxel box dimension and cylinder space bundle dimension was put forward, and the hypothesis was tested by various mathematical statistical methods. Finally, it is pointed out that the pore structure distribution is a multi-scale fractal model, and a single dimension cannot describe all its characteristics.The analysis results show that the voxel box dimension constructed for gray CT images can replace the traditional box dimension, and can quantitatively characterize the pore volume distribution law more reliably, accurately and comprehensively at the meso-scale. In essence, cluster dimension is used to quantitatively characterize the distribution law of pore position. If it is equal to Euclidean dimension, it indicates that pore position distribution has randomness.
-
Key words:
- red bed sandstone /
- pore /
- CT scanning /
- voxel box dimension /
- cluster dimension /
- multiscale fractals model
-
表 1 不同体素下孔隙数目
Table 1. Pore numbers with different voxels
nv δv/μm Nδv(F)/个 1 5.50 1 028 723 2 6.93 786 910 3 7.93 673 312 4 8.73 603 525 5 9.40 547 001 6 9.99 504 430 8 11.00 438 079 16 13.86 281 838 27 16.50 180 948 64 22.00 70 507 125 27.50 29 575 216 33.00 14 307 注:δv为等效立方体盒子边长(μm); nv为体素数目(个); Nδv(F)为覆盖孔隙结构所需等效立方体盒子数目(个) 表 2 各圆柱体内部孔隙率及孔隙数目
Table 2. Porosity and pore number in different cylinders
圆柱体高h=5 mm 圆柱体底面圆半径r=2.5 mm 圆柱体编号 r/mm 圆柱体体积/mm3 孔隙率/% M(r, h)/个 圆柱体编号 h/mm 圆柱体体积/mm3 孔隙率/% M(r, h)/个 1 0.25 0.98 6.15 17 929 11 0.5 9.82 6.15 169 372 2 0.50 3.93 6.11 69 244 12 1.0 19.64 6.13 330 186 3 0.75 8.84 6.00 154 231 13 1.5 29.46 6.12 497 386 4 1.00 15.71 6.11 273 239 14 2.0 39.28 6.13 664 409 5 1.25 24.54 6.15 424 868 15 2.5 49.10 6.06 834 168 6 1.5 35.34 6.17 607 137 16 3.0 58.92 6.09 1 000 456 7 1.75 48.11 6.09 822 582 17 3.5 68.74 6.17 1 173 874 8 2.00 62.83 6.09 1 072 101 18 4.0 78.56 6.14 1 337 775 9 2.25 79.52 6.19 1 353 305 19 4.5 88.38 6.20 1 503 078 10 2.50 98.17 6.17 1 664 708 20 5.0 98.17 6.17 1 664 708 注:M(r, h)为圆柱体内部孔隙数目 表 3 不同尺寸圆柱体内孔隙数目
Table 3. Pores numbers in cylinders with different sizes
圆柱体编号 r/mm h/mm 圆柱体体积/mm3 孔隙数目/个 1 0.35 1 0.38 7 063 2 0.70 2 3.08 43 210 3 1.05 3 10.39 127 510 4 1.40 4 24.63 350 012 5 1.75 5 48.10 822 003 6 2.10 6 83.12 1 011 236 7 2.45 7 132.00 2 107 302 8 2.80 8 197.03 2 969 005 9 3.15 9 280.54 4 354 104 10 3.50 10 384.83 6 579 840 表 4 不同位置平面测量元半径与孔隙数目
Table 4. Measuring element radius and pores number in different planar positions
r/mm M(r)(z=0.5 mm) M(r)(z=1.5 mm) M(r)(z=2.5 mm) M(r)(z=3.5 mm) M(r)(z=4.5 mm) 0.25 55 41 86 68 65 0.5 261 183 348 234 279 0.75 545 404 730 527 631 1 1 011 761 1 280 939 1 128 1.25 1 543 1 222 1 912 1 494 1 703 1.5 2 234 1 715 2 760 2 156 2 373 1.75 3 052 2 392 3 753 2 895 3 262 2 4 007 3 191 4 868 3 798 4 229 2.25 5 130 4 146 6 111 4 821 5 383 2.5 6 358 5 141 7 524 5 920 6 670 -
[1] Zhang C, Tu S H, Bai Q S. Evaluation of pore size and distribution impacts on uniaxial compressive strength of lithophysal rock[J]. Arabian Journal for Science and Engineering, 2018, 43(3): 1235-1246. doi: 10.1007/s13369-017-2810-x [2] Yan C Z, Zheng H. FDEM-flow 3D: A 3D hydro-mechanical coupled model considering the pore seepage of rock matrix for simulating three-dimensional hydraulic fracturing[J]. Computers and Geotechnics, 2017, 81: 212-228. doi: 10.1016/j.compgeo.2016.08.014 [3] Yang X L. Effect ofpore-water pressure on 3D stability of rock slope[J]. International Journal of Geomechanics, 2017, 17(9): 06017015. doi: 10.1061/(ASCE)GM.1943-5622.0000969 [4] Matthew A. A quantified study of segmentation techniques on synthetic geological XRM and FIB-SEM images[J]. Computational Geosciences, 2018, 22(6): 1503-1512. doi: 10.1007/s10596-018-9768-y [5] Wu J, Zhou W, Sun S S, et al. Graptolite-derived organic matter and pore characteristics in the Wufeng-Longmaxi black shale of the Sichuan Basin and its periphery[J]. Acta Geologica Sinica: English Edition, 2019, 93(4): 982-995. doi: 10.1111/1755-6724.13860 [6] Cyprien S, Patrice C, Hamdi A T. Micro-continuum framework for pore-scale multiphase fluid transport in shale formations[J]. Transport in Porous Media, 2019, 127(1): 85-112. doi: 10.1007/s11242-018-1181-4 [7] Zhang L, Chen S, Zhang C, et al. The characterization of bituminous coal microstructure and permeability by liquid nitrogen fracturing based on μCT technology[J]. Fuel, 2020, 262: 116635. doi: 10.1016/j.fuel.2019.116635 [8] Tang C S, Zhu C, Leng T, et al. Three-dimensional characterization of desiccation cracking behavior of compacted clayey soil using X-ray computed tomography[J]. Engineering Geology, 2019, 255: 1-10. doi: 10.1016/j.enggeo.2019.04.014 [9] Khishvand M, Alizadeh A H, Piri M. In-situ characterization of wettability and pore-scale displacements during two- and three-phase flow in natural porous media[J]. Advances in Water Resources, 2016, 97: 279-298. doi: 10.1016/j.advwatres.2016.10.009 [10] Raynaud S, Fabre D, Mazerolle F, et al. Analysis of the internal structure of rocks and characterisation of mechanical deformation by a non-destructive method: X-ray tomodensitometry[J]. Tectonophysics, 1989, 159(1/2): 149-159. [11] 鞠杨, 杨永明, 宋振铎, 等. 岩石孔隙结构的统计模型[J]. 中国科学: 技术科学, 2008, 38(7): 1026-1041. doi: 10.3321/j.issn:1006-9275.2008.07.005Ju Y, Yang Y M, Song Z D, et al. Statistical models of rock pore structure[J]. Scientia Sinica: Technologica, 2008, 38(7): 1026-1041(in Chinese with English abstract). doi: 10.3321/j.issn:1006-9275.2008.07.005 [12] 王家禄, 高建, 刘莉. 应用CT技术研究岩石孔隙变化特征[J]. 石油学报, 2009, 30(6): 887-893. doi: 10.3321/j.issn:0253-2697.2009.06.015Wang J L, Gao J, Liu L. Porosity characteristics of sandstone by X-ray CT scanning system[J]. Acta Petrolei Sinica, 2009, 30(6): 887-893(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2009.06.015 [13] 赵建鹏, 孙建孟, 黎明, 等. 岩石颗粒胶结方式对储层岩石弹性及渗流性质的影响[J]. 地球科学: 中国地质大学学报, 2014, 39(6): 769-774. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201406012.htmZhao J P, Sun J M, Li M, et al. Effects of cementation on elastic property and permeability of reservoir rocks[J]. Earth Science: Journal of China University of Geosciences, 2014, 39(6): 769-774(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201406012.htm [14] 张天付, 谢淑云, 鲍征宇, 等. 基于高分辨率CT的孔隙型白云岩储层孔隙系统分形与多重分形研究[J]. 地质科技情报, 2016, 35(6): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201606009.htmZhang T F, Xie S Y, Bao Z Y, et al. Fractal and multifractal research on pore system for porous dolomite reservoirs based on high-resolution CT[J]. Geological Science and Technology Information, 2016, 35(6): 55-62 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201606009.htm [15] 彭瑞东, 杨彦从, 鞠杨, 等. 基于灰度CT图像的岩石孔隙分形维数计算[J]. 科学通报, 2011, 56(26): 2256-2266. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201126019.htmPeng R D, Yang Y C, Ju Y, et al. Computation of fractal dimension of rock pores based on gray CT images[J]. Chinese Science Bulletin, 2011, 56(26): 2256-2266(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201126019.htm [16] Wang G, Qin X J, Shen J N, et al. Quantitative analysis of microscopic structure and gas seepage characteristics of low-rank coal based on CT three-dimensional reconstruction of CT images and fractal theory[J]. Fuel, 2019, 256: 115900. doi: 10.1016/j.fuel.2019.115900 [17] 谢和平. 分形几何及其在岩土力学中的应用[J]. 岩土工程学报, 1992, 14(1): 14-24. doi: 10.3321/j.issn:1000-4548.1992.01.002Xie H P. Fractal geometry and its application to rock and soil materials[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(1): 14-24(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.1992.01.002 [18] 谢和平. 分形-岩石力学导论[M]. 北京: 科学出版社, 1996.Xie H P. An introduction to the fractal-rock mechanics[M]. Beijing: Science Press, 1996(in Chinese). [19] 张季如, 陶高梁, 黄丽, 等. 表征孔隙孔径分布的岩土体孔隙率模型及其应用[J]. 科学通报, 2010, 55(增刊2): 2661-2670. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2010Z2015.htmZhang J R, Tao G L, Huang L, et al. Porosity models for determining the pore-size distribution of rocks and soils and their applications[J]. Chinese Science Bulletin, 2010, 55(S2): 2661-2670(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2010Z2015.htm [20] 刘凯, 石万忠, 王任, 等. 鄂尔多斯盆地杭锦旗地区盒1段致密砂岩孔隙结构分形特征及其与储层物性的关系[J]. 地质科技通报, 2021, 40(1): 57-68. doi: 10.19509/j.cnki.dzkq.2021.0102Liu K, Shi W Z, Wang R, et al. Pore structure fractal characteristics and its relationship with reservoir properties of the first Member of lower Shihezi Formation tight sandstone in Hangjinqi area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 57-68(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0102 [21] 方海平, 谢淑云, 张天付, 等. 五大连池玄武岩三维孔隙组构的多重分形特征[J]. 地质科技情报, 2015, 34(3): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503004.htmFang H P, Xie S Y, Zhang T F, et al. Multifractality of basalt micropores based on high-resolution digital CT image[J]. Geological Science and Technology Information, 2015, 34(3): 24-29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503004.htm [22] 张宝鑫, 傅雪海, 张苗, 等. 山西省域煤系泥页岩孔隙分形特征[J]. 地质科技情报, 2019, 38(4): 82-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904010.htmZhang B X, Fu X H, Zhang M, et al. Fractal features of coal measures shale in Shanxi Province[J]. Geological Science and Technology Information, 2019, 38(4): 82-92(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904010.htm [23] 程志林, 隋微波, 宁正福, 等. 数字岩心微观结构特征及其对岩石力学性能的影响研究[J]. 岩石力学与工程学报, 2018, 37(2): 449-460.Cheng Z L, Sui W B, Ning Z F, et al. Microstructure characteristics and its effects on mechanical properties of digital core[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 449-460(in Chinese with English abstract). [24] Feldkamp L A, Davis L C, Kress J W. Practical cone-beam algorithm[J]. Journal of the Optical Society of America A: Optics Image Science and Vision, 1984, 1(6): 612-619. doi: 10.1364/JOSAA.1.000612 [25] 丁自伟, 李小菲, 唐青豹, 等. 砂岩颗粒孔隙分布分形特征与强度相关性研究[J]. 岩石力学与工程学报, 2020, 39(9): 1787-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009006.htmDing Z W, Li X F, Tang Q B, et al. Study on correlation between fractal characteristics of pore distribution and strength of sandstone particles[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1787-1796(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009006.htm [26] 周盛涛, 方文, 蒋楠, 等. 冻融循环作用下砂岩单轴压缩破坏断口特征分形研究[J]. 地质科技通报, 2020, 39(5): 61-68. doi: 10.19509/j.cnki.dzkq.2020.0518Zhou S T, Fang W, Jiang N, et al. Fractal geometry study on uniaxial compression fracture characteristics of sandstone subjected to freeze-thaw cycles[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 61-68(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0518