Application of PXRF in sediment analysis for geochemical prospecting in Dragon Horn area on the southwestern Indian Ridge
-
摘要:
洋中脊热液活动伴生的多金属硫化物是未来重要的接替资源,但目前其勘查技术手段相对匮乏。便携式X射线荧光光谱(PXRF)是针对野外原位快速分析而发展起来的一项新技术,常被应用于岩石露头地球化学研究和土壤重金属污染评价。采用PXRF对西南印度洋脊龙角区的沉积物开展了化学组成分析,并通过元素的空间分布特征确定热液区可能产出的位置。结果表明,研究区的沉积物可能由钙质沉积物、基岩碎屑、热液组分等组成,部分沉积物具有较高的热液成矿元素含量,明显受到了热液活动的影响。通过面浓度-个数分形方法,确定Cu、Zn、Fe、Mn、As等主要成矿元素的异常下限。根据上述元素的空间分布特征,在研究区识别出了6处异常区,其中3处异常区与已知热液区相吻合,另外3处异常区可能代表了未发现的热液活动。上述工作为洋中脊多金属硫化物的勘查提供了新的思路。
-
关键词:
- 便携式X射线荧光光谱 /
- 热液活动 /
- 地球化学 /
- 沉积物 /
- 印度洋中脊
Abstract:Polymetallic sulfides associated with hydrothermal activity near the mid-ocean ridges are importantpotential replacement resources in the future, while their exploration techniques and methods are relatively scarce at present. The Portable X rayFluorescence Spectroscopy(PXRF) is a new technology developed for in situ rapid analysis in field, and it has been applied in outcrops rock geochemical analyzing, and evaluation of soil heavy metal pollution.In this study, we applied PXRF in geochemical composition analyzing of sediments collected from the Dragon Horn area on the Southwest Indian Ridge, to determine possible location of potential hydrothermal actives by the spatial distribution of elements. The results show that sediments in the study area are consist of calcareous sediments, bedrock debris, hydrothermal ore-forming elements, etc.Some samples show relatively high concentrations of hydrothermal ore-forming elements, which are obviously affected by hydrothermal activities. Based on the C-N fractural method, the threshold anomaly of Cu, Zn, Fe, Mn and As were determined.According to their spatial distribution characteristics of the above elements, six anomalousareas were identifiedin the study area, three of which were consistent with known identified hydrothermal areas, and the other three anomalous areas may represent undiscovered hydrothermal activities.This study provides new strategies for hydrothermal sulfide exploration on mid ocean ridges.
-
图 1 西南印度洋中脊龙角区大地构造背景(a)、采样位置图和热液区及异常的位置(b)(据文献[18]修改)
CIR.中印度洋脊; SWIR.西南印度洋脊; SEIR.东南印度洋脊
Figure 1. Tectonic setting (a) and topography map showing locations of sediment samples collected in Dragon Horn area on the southwest Indian Ridge (b)
表 1 标样180~646连续测试分析统计结果
Table 1. Statistic of continuous analyzing results of the standard sample 180-646
Cu Zn Mn Mo As Zr Sr Ti Al P Si Ca S Fe ×10-6 % 次数N 68 68 68 68 68 68 68 68 68 68 68 68 68 68 最小值 210 60 391 18 97 370 108 0.421 4.19 1.48 32.36 0.75 0.16 4.06 最大值 238 75 475 23 107 397 115 0.526 4.89 1.98 34.71 1.30 0.18 4.23 平均值 225 67 439 20 102 385 112 0.479 4.60 1.71 33.70 0.97 0.17 4.16 方差 6 3 18 1 2 5 1 0.035 0.19 0.10 0.67 0.14 0.01 0.04 标样值 237 70 490 16 111 385 109 0.484 3.97 误差/% -5.12 -4.73 -10.51 27.20 -7.81 -0.10 2.83 -1.00 4.82 注:Al、Si、P、Ca、Fe、S的单位为%,其余元素含量单位均为10-6 表 2 龙角区沉积物PXRF分析结果统计表
Table 2. Statistics of PXRF analyzing results of the sediment samples from Dragon Horn Area
Cu Zn Pb As Ni Mo Ti Fe Mn K Al Si Ca /×10-6 /% 最小值 15 14 3 2 24 2 94 0.15 0.013 0.02 0.14 0.64 1.75 最大值 1 202 133 10 14 1032 22 2 005 6.52 2.253 0.58 1.2 19.15 47.15 平均值 84 36 5 4 92 6 453 1.06 0.071 0.16 0.55 3.49 41.18 中位数 46 30 5 4 45 5 365 0.59 0.036 0.16 0.52 3.07 42.95 标准差 155.0 21.0 1.0 2.0 186.0 3.0 344 1.15 0.260 0.08 0.19 2.34 7.41 变异系数 1.8 0.6 0.2 0.5 2.0 0.5 0.8 0.15 0.013 0.5 0.3 0.7 1.75 背景值 18 14 4.7 2.0 14.3 0.4 - 0.38 0.033 - - - - 注:沉积物金属元素背景值据文献[31] 表 3 龙角区沉积物主要成矿元素的分维值
Table 3. Fractal dimension value of the main ore forming elements of the sediments in the Dragon Horn area
指标 Cu Zn Fe As Mn D1 0.25 0.35 0.20 0.19 0.230 D2 1.49 2.62 0.97 2.97 2.450 异常下限 39.80 27.50 0.38 3.00 0.032 -
[1] Herzig P M, Hannington M D. Polymetallic massive sulfides at the modern seafloor: A review[J]. Ore Geology Reviews, 1995, 10(2): 95-115. doi: 10.1016/0169-1368(95)00009-7 [2] 马瑶, 赵江南, 廖时理. 模糊层次分析法在西南印度洋中脊46°~52°E多金属硫化物远景区预测中的应用[J]. 地质科技通报, 2020, 39(6): 75-82. doi: 10.19509/j.cnki.dzkq.2020.0622Ma Y, Zhao J N, Liao S L. Application of fuzzy analytic hierarchy process to mineral prospectivity mapping of polymetallic sulfide deposits in the Southwest Indian ridge between 46° to 52° E[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 75-82 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0622 [3] Baker E T. Exploring the ocean for hydrothermal venting: New techniques, new discoveries, new insights[J]. Ore Geology Reviews, 2017, 86: 55-69. doi: 10.1016/j.oregeorev.2017.02.006 [4] German C R, Sparks R S J. Particle recycling in the TAG hydrothermal plume[J]. Earth and Planetary Science Letters, 1993, 116(1/4): 129-134. [5] Walter P, Stoffers P. Chemical characteristics of metalliferous sediments from eight areas on the Galapagos Rift and East Pacific Rise between 2°N and 42°S[J]. Marine Geology, 1985, 65(3/4): 271-287. [6] Rona P A. Hydrothermal mineralization at seafloor spreading centers[J]. Earth-Science Reviews, 1984, 20(1): 1-104. doi: 10.1016/0012-8252(84)90080-1 [7] Feely R A, Massoth G J, Baker E T, et al. Tracking the dispersal of hydrothermal plumes from the Juan de Fuca Ridge using suspended matter compositions[J]. Journal of Geophysical Research: Solid Earth(1978-2012), 1992, 97(B3): 3457-3468. doi: 10.1029/91JB03062 [8] Feely R A, Lewison M, Massoth G J, et al. Composition and dissolution of black smoker particulates from active vents on the Juan de Fuca Ridge[J]. Journal of Geophysical Research: Solid Earth(1978-2012), 1987, 92(B11): 11347-11363. doi: 10.1029/JB092iB11p11347 [9] Marchig V, Gundlach H. Iron-rich metalliferous sediments on the East Pacific Rise: Prototype of undifferentiated metalliferous sediments on divergent plate boundaries[J]. Earth and Planetary Science Letters, 1982, 58(3): 361-382. doi: 10.1016/0012-821X(82)90086-3 [10] Kenna T C, Nitsche F O, Herron M M, et al. Evaluation and calibration of a field portable X-ray fluorescence spectrometer for quantitative analysis of siliciclastic soils and sediments[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(2): 395-405. doi: 10.1039/C0JA00133C [11] Hou X, He Y, Jones B T. Recent advances in portable X-ray fluorescence spectrometry[J]. Applied Spectroscopy Reviews, 2004, 39(1): 1-25. doi: 10.1081/ASR-120028867 [12] Bosco G L. Development and application of portable, hand-held X-ray fluorescence spectrometers[J]. TrAC Trends in Analytical Chemistry, 2013, 45: 121-134. doi: 10.1016/j.trac.2013.01.006 [13] Piorek S. Field-portable X-ray fluorescence spectrometry: Past, present, and future[J]. Field Analytical Chemistry & Technology, 1997, 1(6): 317-329. [14] Melquiades F L, Appoloni C R. Application of XRF and field portable XRF for environmental analysis[J]. Journal of radioanalytical and nuclear chemistry, 2004, 262(2): 533-541. doi: 10.1023/B:JRNC.0000046792.52385.b2 [15] Dick H J, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426: 405-412. doi: 10.1038/nature02128 [16] Georgen J E, Lin J, Dick H J B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspotswith the Southwest Indian Ridge: Effects of transform offsets[J]. Earth and Planetary Science Letters, 2001, 187(3/4): 283-300. [17] Sauter D, Cannat M, Meyzen C, et al. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20'E: Interaction with the Crozet hotspot?[J]. Geophysical Journal International, 2009, 179(2): 687-699. doi: 10.1111/j.1365-246X.2009.04308.x [18] Tao C H, Chen S, Baker E T, et al. Hydrothermal plume mapping as a prospecting tool for seafloor sulfide deposits: A case study at the Zouyu-1 and Zouyu-2 hydrothermal fields in the southern Mid-Atlantic Ridge[J]. Marine Geophysical Research, 2017, 38(1/2): 3-16. [19] Tao C H, Jr W E S, Lowell R P, et al. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading Ridge[J]. Nature communications, 2020, 11: 1300. doi: 10.1038/s41467-020-15062-w [20] Tao C H, Li H M, Jin X B, et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge[J]. Chinese science bulletin, 2014, 59(19): 2266-2276. doi: 10.1007/s11434-014-0182-0 [21] Mcarthur J M, Elderfield H. Metal accumulation rates in sediments from Mid-Indian Ocean Ridge and Marie Celeste Fracture Zone[J]. Nature, 1977, 266: 437-439. doi: 10.1038/266437a0 [22] Scott M R, Scott R B, Morse J W, et al. Metal-enriched sediments from the TAG Hydrothermal Field[J]. Nature, 1978, 276: 811-813. doi: 10.1038/276811a0 [23] Liang J, Tao C, Yang W, et al. 230Th/238U dating of sulfide chimneys in the Longqi-1 hydrothermal field, Southwest Indian Ridge[J]. Acta Geologica Sinica: English Edition, 2018, 92: 77-78. [24] Liao S L, Tao C H, Li H M, et al. Use of portable X-ray fluorescence in the analysis of surficial sediments in the exploration of hydrothermal vents on the Southwest Indian Ridge[J]. Acta Oceanologica Sinica, 2017, 36(7): 66-76. doi: 10.1007/s13131-017-1085-0 [25] 石文杰, 魏俊浩, 谭俊, 等. 基于滑动窗口对数标准离差法的地球化学异常识别: 以青海多彩地区1∶5万水系沉积物地球化学测量为例[J]. 地质科技情报, 2019, 38(5): 81-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905008.htmShi W J, Wei J H, Tan J, et al. Identifying the geochemical anomalies using logarithmic standard deviation statistics method based on sliding window: The geochemical survey of 1∶50 000 water sediments in Duocai region of Qinghai Province as an example[J]. Geological Science and Technology Information, 2019, 38(5): 81-89 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905008.htm [26] Cheng Q M, Agterberg F P, Ballantyne S B. The separation of geochemical anomalies from background by fractal methods[J]. Journal of geochemical exploration, 1994, 51(2): 109-130. doi: 10.1016/0375-6742(94)90013-2 [27] 成秋明. 多重分形与地质统计学方法用于勘查地球化学异常空间结构和奇异性分析[J]. 地球科学: 中国地质大学学报, 2001, 26(2): 161-166. doi: 10.3321/j.issn:1000-2383.2001.02.010Cheng Q M. Multifractal and geostatistic methods for characterizing local structure and singularity properties of exploration geochemical anomalies[J]. Earth Science: Journal of China University of Geosciences, 2001, 26(2): 161-166 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2001.02.010 [28] 成秋明. 多维分形理论和地球化学元素分布规律[J]. 地球科学: 中国地质大学学报, 2000, 25(3): 311-318. doi: 10.3321/j.issn:1000-2383.2000.03.017Cheng Q M. Multifractal theory and geochemical element distribution pattern[J]. Earth Science: Journal of China University of Geosciences, 2000, 25(3): 311-318 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2000.03.017 [29] 成秋明. 空间自相似性与地球物理和地球化学场的分解方法[J]. 地球物理学进展, 2001, 16(2): 8-17. doi: 10.3969/j.issn.1004-2903.2001.02.002Cheng Q M. Spatial self-similarity and geophysical and geochemical anomaly decomposition[J]. Progress in Geophysics, 2001, 16(2): 8-17 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-2903.2001.02.002 [30] Arne D C, Mackie R A, Jones S A. The use of property-scale portable X-ray fluorescence data in gold exploration: Advantages and limitations[J]. Geochemistry: Exploration, Environment, Analysis, 2014, 14(3): 233-244. doi: 10.1144/geochem2013-233 [31] Liao S L, Tao C H, Li H M, et al. Surface sediment geochemistry and hydrothermal activity indicators in the Dragon Horn area on the Southwest Indian Ridge[J]. Marine Geology, 2018, 398: 22-34. doi: 10.1016/j.margeo.2017.12.005 [32] Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts[J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005 [33] Dunk R M, Mills R A. The impact of oxic alteration on plume-derived transition metals in ridge flank sediments from the East Pacific Rise[J]. Marine geology, 2006, 229(3): 133-157. [34] Subha Anand S, Rahaman W, Lathika N, et al. Trace elements and Sr, Nd isotope compositions of surface sediments inthe Indian Ocean: An evaluation of sources and processes for sediment transport and dispersal[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(6): 3090-3112. doi: 10.1029/2019GC008332 [35] Hoffman C L, Nicholas S L, Ohnemus D C, et al. Near-field iron and carbon chemistry of non-buoyant hydrothermal plume particles, Southern East Pacific Rise 15°S[J]. Marine Chemistry, 2018, 201: 183-197. doi: 10.1016/j.marchem.2018.01.011 [36] Sun Z L, Cao H, Yin X J, et al. Precipitation and subsequent preservation of hydrothermal Fe-Mn oxides in distal plume sediments on Juan de Fuca Ridge[J]. Journal of Marine Systems, 2018, 187: 128-140. doi: 10.1016/j.jmarsys.2018.06.014 [37] Feely R A, Massoth G J, Trefry J H, et al. Composition and sedimentation of hydrothermal plume particles from North Cleft segment, Juan de Fuca Ridge[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B3): 4985-5006. doi: 10.1029/93JB02509 [38] German C R, Campbell A C, Edmond J M. Hydrothermal scavenging at the Mid-Atlantic Ridge: Modification of trace element dissolved fluxes[J]. Earth and Planetary Science Letters, 1991, 107(1): 101-114. doi: 10.1016/0012-821X(91)90047-L [39] Hrischeva E, Scott S D. Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Ridge[J]. Geochimica et Cosmochimica Acta, 2007, 71(14): 3476-3497. doi: 10.1016/j.gca.2007.03.024 [40] Trocine R P, Trefry J H. Distribution and chemistry of suspended particles from an active hydrothermal vent site on the Mid-Atlantic Ridge at 26°N[J]. Earth and Planetary Science Letters, 1988, 88(1): 1-15. [41] German C R, Higgs N C, Thomson J, et al. A geochemical study of metalliferous sediment from the TAG Hydrothermal Mound, 26°08'N, Mid-Atlantic Ridge[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B6): 9683-9692. doi: 10.1029/92JB01705 [42] Rusakov V Y, Shilov V V, Ryzhenko B N, et al. Mineralogical and geochemical zoning of sediments at the Semenov cluster of hydrothermal fields, 13°31'-13°30'N, Mid-Atlantic Ridge[J]. Geochemistry International, 2013, 51(8): 646-669. doi: 10.1134/S0016702913050066 [43] Liao S L, Zhu C W, Zhou J P, et al. Distal axis sulfide mineralization on the ultraslow-spreading Southwest Indian Ridge: An LA-ICP-MS study of pyrite from the East Longjing-2 hydrothermal field[J]. Acta Oceanologica Sinica, 2021, 40(5): 105-113. doi: 10.1007/s13131-020-1681-2 [44] Lisitzin A P, Lukashin V N, Gordeev V V, et al. Hydrological and geochemical anomalies associated with hydrothermal activity in SW Pacific marginaland back-arc basins[J]. Marine geology, 1997, 142(1): 7-45. [45] Dekov V M, Petersen S, Garbe-Schönberg C D, et al. Fe-Si-oxyhydroxide deposits at a slow-spreading centre with thickened oceanic crust: The Lilliput hydrothermal field(9°33'S, Mid-Atlantic Ridge)[J]. Chemical Geology, 2010, 278(3/4): 186-200.