Analysis of high-fluoride groundwater formation mechanisms and assessment of health risk in Baxia region, Zhangjiakou
-
摘要: 为了明晰张家口坝下地区高氟地下水的成因,探究其对当地居民饮用水安全的潜在影响,采集了391组潜水样品(井深≤ 100 m),通过水化学分析法、图解法、离子比例法、饱和指数计算法等对高氟地下水的分布与成因进行了分析,并利用美国EPA非致癌健康风险评价模型对四类受体人群进行健康风险评价。结果表明,研究区高氟地下水(ρ(F-)>1.5 mg/L)主要分布在地势低洼、高氟岩浆岩下游的山前地带、封闭式小盆地、沿河两侧的径流滞缓区等地区,其主要机制主要包括矿物风化溶解作用、碱性环境下的晶格置换作用和阳离子交换作用;盐效应会影响研究区地下水中F-富集,但不是高氟地下水的主要成因;农业活动与地下水中F-的富集无关。此外,坝下地区分布的电厂、钢铁厂等是永定河水系的潜在污染源,对高氟地下水形成的影响不容忽视。研究区婴儿、儿童、成年男性和成年女性的平均健康风险指数依次为1.20,0.74,0.69,0.56,呈现出受体年龄越小,风险越高;女性对含氟地下水的抗风险能力优于男性的特征。建议针对高风险区发展多水源联合供水模式,提升退氟改水工程效率,保障区域供水安全。Abstract: Totally, 391 unconfined groundwater samples(depth ≤ 100 m) were collected in order to investigate the high-fluoride groundwater formation causes, and explore the potential impacts on drinking water safety to local residents in Baxia region, Zhangjiakou.Hydrochemical analysis, graphical method, ions ratio method and saturation index calculation method were applied in this study to analyze the spatial distribution and formation mechanisms of high-F- groundwater.Meanwhile, the non-carcinogenic human health risk assessment model recommended by US EPA was also used to evaluate health risk of four groups of receptors.The results indicate that high-F- groundwater(F->1.5 mg/L) mainly distribute in the low-lying and piedmont zone of the downstream of high-F- magmatic rock, enclosed basin, runoff stagnant area along the river and other areas.The dissolution and precipitation of the minerals, crystal lattice replacement under alkaline environment, ion exchange are the major mechanisms for high-F- groundwater formation in the study area.Salt effect can affect F- enrichment in groundwater, but it is not the principal mechanism.There is no correlation between agricultural activities and F- enrichment in groundwater.Additionally, the power plants, steelworks and other factories distributed in Baxia region are the potential pollution sources of the Yongding River system.The impacts of these industrial contamination sources on high-F- groundwater formation cannot be ignored.The hazard index values of infants, children, adult males and adult females were 1.20, 0.74, 0.69 and 0.56, respectively, demonstrating the younger people are more susceptible to fluoride contamination.Moreover, the adult females are more resistant to fluoride contamination than the adult males in the study area.Thus, it is suggested to develop the multi-source combined water supply mode for high risk areas and improve the efficiency of defluorination, in order to ensure water supply safety.
-
Key words:
- high-fluoride groundwater /
- water-rock interaction /
- ion exchange /
- health risk /
- Baxia region
-
表 1 坝下地区各地下水系统的补、径、排条件差异分析
Table 1. Analysis of differences of recharge, runoff and discharge conditions of different groundwater systems in Baxia region
地下水系统 补给条件 径流条件 排泄条件 永定河 ①大气降水入渗补给
②山区侧向径流补给、地表渗漏补给、灌溉回归水补给等地下水径流方向基本和地形一致,由西北向东南径流 ①分散小泉或沿沟谷潜流渗透(基岩山区裂隙水)
②大泉集中排泄或侧向径流排泄(基岩山区岩溶水)
③溢出带泉流排泄和人工开采为主(盆地区冲洪积扇)
④潜水蒸发和潜流向下游排泄(河道带)
⑤人工开采潮白河 ①大气降水入渗补给
②地表水的入渗补给(河道中、下游地段)①运移方向与地形坡向基本一致
②受构造控制,在断裂带附近和断层谷中形成通道式径流①泉排泄
②泄流排泄
③人工开采(沟谷地带)大清河 ①大气降水入渗补给
②井灌回归补给地下水径流方向与地表水一致,沿地势自北向南沿沟谷及河道径流 ①人工开采
②侧向径流排泄
③泉水溢出排泄表 2 健康风险评价参数取值
Table 2. Parameter values for health risk assessment
表 3 研究区地下水水化学参数统计
Table 3. Statistics of groundwater hydrochemical parameters in the study area
水化学参数 pH值 K+ Na+ Ca2+ Mg2+ HCO3- ρB/(mg·L-1) 最大值~最小值 9.31~7.06 36.1~0.01 588.8~2.30 197.19~3.16 145.34~0.05 949.43~52.44 平均值 7.85 2.36 62.05 53.70 27.71 291.63 水化学参数 Cl- SO42- NO3- F- TDS ρB/(mg·L-1) ρB/(g·L-1) 最大值~最小值 1 323.11~2.84 428.27~1.42 835.4~3.20 8.28~0.02 4.07~0.09 平均值 43.11 38.21 64.27 0.77 0.72 表 4 研究区地下水中典型矿物的饱和指数统计
Table 4. Statistics of saturation indices of the typical minerals in groundwater in the study area
典型矿物饱和指数 SIfl SIcal SIdol SIgyp SIhal 最大值~最小值 -0.09~-4.06 1.42~-0.73 3.44~-1.24 -1.11~-3.65 -5.31~-9.69 平均值 -2.16 0.49 1.37 -2.27 -7.68 注:SIfl.萤石饱和指数;SIcal.方解石饱和指数;SIdol.白云石饱和指数;SIhal.石盐饱和指数;SIgyp.石膏饱和指数 表 5 研究区含氟地下水健康风险评价结果
Table 5. Results of health risk assessment for F-bearing groundwater in the study area
受体人群 健康风险指数HI HI > 1样品数 超标率/% 最小值 最大值 平均值 婴儿 0.00 12.93 1.20 174 44.5 儿童 0.00 7.99 0.74 77 19.7 成年男性 0.00 11.20 0.69 75 19.2 成年女性 0.00 6.01 0.56 38 9.7 -
[1] 徐斌, 张艳. 基于GIS的泾惠渠灌区地下水污染人体健康风险评价[J]. 农业环境科学学报, 2018, 37(5): 992-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201805019.htmXu B, Zhang Y. GIS-based human health risk assessment of groundwater contamination in the Jinghuiqu irrigation district of China[J]. Journal of Agro-Environment Science, 2018, 37(5): 992-1000(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201805019.htm [2] Zhang L, Huang D, Yang J, et al. Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemicfluorosis areas[J]. Environmental Pollution, 2017, 222: 118-125. doi: 10.1016/j.envpol.2016.12.074 [3] World Health Organization. Boron in drinking-water: Background document for development of WHO guidelines for drinking-water quality[C]//Anon. Guidelines for drinking-water quality. [S. l.]: World Health Organization, 2004. [4] 中华人民共和国国家卫生健康委员会. 生活饮用水卫生标准: GB 5749-2006[S]. 北京: 中国标准出版社, 2006.National Health Commission of the People's Republic of China. Standards for drinking water quality: GB 5749-2006[S]. Beijing: Standards Press of China, 2006(in Chinese). [5] 中华人民共和国生态环境部. 地下水质量标准: GB/T 14848-2017[S]. 北京: 中国标准出版社, 2017.Ministry of Ecology and Environment of the People's Republic of China. Standards for drinking water quality: GB/T 14848-2017[S]. Beijing: Standards Press of China, 2017(in Chinese). [6] 邓安利, 王敏黛, 王帅, 等. 高氟孔隙地下水地球化学成因: 以山西东山调水工程区为例[J]. 地质科技情报, 2015, 34(6): 169-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506024.htmDeng A L, Wang M D, Wang S, et al. Geochemical genesis of high-fluoride groundwater: A case study in the import region of the Dongshan water transfer project, Shanxi Province[J]. Geological Science and Technology Information, 2015, 34(6): 169-175(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506024.htm [7] 梁川, 苏春利, 吴亚, 等. 大同盆地高氟地下水的分布特征及形成过程分析[J]. 地质科技情报, 2014, 33(2): 154-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402026.htmLiang C, Su C L, Wu Y, et al. Distribution and geochemical processes for the formation of high fluoride groundwater in Datong Basin[J]. Geological Science and Technology Information, 2014, 33(2): 154-159(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402026.htm [8] 潘欢迎, 邹常健, 毕俊擘, 等. 新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J]. 地质科技通报, 2021, 40(3): 194-203. doi: 10.19509/j.cnki.dzkq.2021.0312Pan H Y, Zou C J, Bi J B, et al. Hydrochemical characteristics and fluoride enrichment mechanisms of high-fluoride groundwater in a typical piedmont proluvial fan in Aksu area, Xinjiang, China[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 194-203(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0312 [9] 徐颖, 李梦雪, 董心月, 等. 氟化工园区及周边地下水健康风险及脆弱性评价[J]. 环境科学学报, 2020, 40(6): 2300-2310. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202006041.htmXu Y, Li M X, Dong X Y, et al. Health risk and vulnerability assessment of groundwater in fluorine chemical industrial and surrounding areas[J]. Acta Scientiae Circumstantiae, 2020, 40(6): 2300-2310(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202006041.htm [10] Rashid A, Farooqi A, Gao X, et al. Geochemical modeling, source apportionment, health risk exposure and control of higher fluoride in groundwater of sub-district Dargai, Pakistan[J]. Chemosphere, 2020, 243: 125409. doi: 10.1016/j.chemosphere.2019.125409 [11] Parvaiz A, Khattak J A, Hussain I, et al. Salinity enrichment, sources and its contribution to elevated groundwater arsenic and fluoride levels in Rachna Doab, Punjab Pakistan: Stable isotope(δ2H and δ18O) approach as an evidence[J]. Environmental Pollution, 2021, 268: 115710. doi: 10.1016/j.envpol.2020.115710 [12] 吕晓立, 刘景涛, 周冰, 等. 塔城盆地地下水氟分布特征及富集机理[J]. 地学前缘, 2021, 28(2): 426-436. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102031.htmLü X L, Liu J T, Zhou B, et al. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Baisn[J]. Earth Science Frontiers, 2021, 28(2): 426-436(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102031.htm [13] Su C, Wang Y, Xie X, et al. An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin, Northern China[J]. Environmental Science Process Impacts, 2015, 17(4): 791-801. doi: 10.1039/C4EM00584H [14] Li J, Wang Y, Zhu C, et al. Hydrogeochemical processes controlling the mobilization and enrichment of fluoride in groundwater of the North China Plain[J]. Science of the Total Environment, 2020, 730: 138877. doi: 10.1016/j.scitotenv.2020.138877 [15] 杨志光, 尤冰, 霍秋雅. 张家口市下花园区地下水中氟的分布规律及成因探讨[J]. 西部探矿工程, 2020, 32(10): 107-110. doi: 10.3969/j.issn.1004-5716.2020.10.035Yang Z G, You B, Huo Q Y. The distribution and mechanism discussion of fluoride in the groundwater in the Xiahuayuan District, Zhangjiakou City[J]. West-China Exploration Engineering, 2020, 32(10): 107-110(in Chinese with English abstract). doi: 10.3969/j.issn.1004-5716.2020.10.035 [16] 中华人民共和国生态环境部. 水质采样样品的保存和管理技术规定: HJ 493-2009[S]. 北京: 中国标准出版社, 2009.Ministry of Ecology and Environment of the People's Republic of China. Water quality sampling-technical regulation of the preservation and handling of samples: HJ 493-2009[S]. Beijing: Standards Press of China, 2009(in Chinese). [17] Zimmer K, Zhang Y, Lu P, et al. SUPCRTBL: A revised and extended thermodynamic dataset and software package of SUPCRT92[J]. Computers & Geosciences, 2016, 90: 97-111. [18] Parkhurst D, Appelo C. Description of input and examples for PHREEQC version 3: A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[M]. Colorado: U S Geological Survey, 2013. [19] Zhang Y, Hu B, Teng Y, et al. A library of BASIC scripts of reaction rates for geochemical modeling using PHREEQC[J]. Computers & Geosciences, 2019, 133: 104316. [20] Wang W, Duan L, Yang X, et al. Shallow groundwater hydro-chemical evolution and simulation with special focus on Guanzhong Basin, China[J]. Environmental Engineering and Management Journal, 2013, 12(7): 1447-1455. doi: 10.30638/eemj.2013.178 [21] Schoeller H. Qualitative evaluation of groundwater resources: Methods and techniques of groundwater investigation and development[J]. Water Research, 1967, 33: 44-52. [22] US EPA. Available information on assessment exposure from pesticides in food[R]. Washington D C: U.S. Environmental Protection Agency Office of Pesticide Programs, 2000. [23] Yin S, Xiao Y, Han P, et al. Investigation of groundwater contamination and health implications in a typical semiarid basin of North China[J]. Water, 2020, 12(4): 1137. doi: 10.3390/w12041137 [24] 中华人民共和国国家卫生健康委员会. 中国居民营养与慢性病状况报告(2020年)[M]. 北京: 人民卫生出版社, 2020.National Health Commission of the People's Republic of China. Report on Chinese residents' chronic diseases and nutrition(2020)[M]. Beijing: People's Medical Publishing House, 2020(in Chinese). [25] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103 [26] Su C, Wang Y, Xie X, et al. Aqueous geochemistry of high-fluoride groundwater in Datong Basin, Northern China[J]. Journal of Geochemical Exploration, 2013, 135(1): 79-92. [27] Xiao J, Jin Z, Zhang F. Geochemical controls on fluoride concentrations in natural waters from the middle Loess Plateau, China[J]. Journal of Geochemical Exploration, 2015, 159: 252-261. doi: 10.1016/j.gexplo.2015.09.018 [28] 左锐, 谷鹏, 滕彦国, 等. 下辽河平原高氟地下水空间分布及成因分析[J]. 水文地质工程地质, 2015, 42(3): 135-141. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201503025.htmZui R, Gu P, Teng Y G, et al. Spatial distribution and genesis of the high-fluorine groundwater in the Lower Liaohe River Plain[J]. Hydrogeology & Engineering Geology, 2015, 42(3): 135-141(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201503025.htm [29] Gao X, Wang Y, Li Y, et al. Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng Basin, northern China[J]. Environmental Geology, 2007, 53(4): 795-803. doi: 10.1007/s00254-007-0692-z [30] 胡斌, 滕彦国, 李腾飞, 等. 傍河水源地取水井堵塞特征及缓解途径概述[J]. 地质科技情报, 2016, 35(4): 178-183, 191. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604028.htmHu B, Teng Y G, Li T F, et al. Clogging characteristics of riverbank filtration on wells and its alleviating approaches[J]. Geological Science and Technology Information, 2016, 35(4): 178-183, 191(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604028.htm [31] Hu B, Teng Y G, Zhai Y Z, et al. Riverbank filtration in China: A review and perspective[J]. Journal of Hydrology, 2016, 541: 914-927. doi: 10.1016/j.jhydrol.2016.08.004