留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

张家口坝下地区高氟地下水成因分析与健康风险评价

宋晓光 芦岩 梁仕凯 胡斌

宋晓光, 芦岩, 梁仕凯, 胡斌. 张家口坝下地区高氟地下水成因分析与健康风险评价[J]. 地质科技通报, 2022, 41(1): 240-250, 259. doi: 10.19509/j.cnki.dzkq.2021.0070
引用本文: 宋晓光, 芦岩, 梁仕凯, 胡斌. 张家口坝下地区高氟地下水成因分析与健康风险评价[J]. 地质科技通报, 2022, 41(1): 240-250, 259. doi: 10.19509/j.cnki.dzkq.2021.0070
Song Xiaoguang, Lu Yan, Liang Shikai, Hu Bin. Analysis of high-fluoride groundwater formation mechanisms and assessment of health risk in Baxia region, Zhangjiakou[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 240-250, 259. doi: 10.19509/j.cnki.dzkq.2021.0070
Citation: Song Xiaoguang, Lu Yan, Liang Shikai, Hu Bin. Analysis of high-fluoride groundwater formation mechanisms and assessment of health risk in Baxia region, Zhangjiakou[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 240-250, 259. doi: 10.19509/j.cnki.dzkq.2021.0070

张家口坝下地区高氟地下水成因分析与健康风险评价

doi: 10.19509/j.cnki.dzkq.2021.0070
基金项目: 

河北省国土资源厅项目 2013995431

中国博士后科学基金项目 2020M680698

详细信息
    作者简介:

    宋晓光(1989-), 男, 工程师, 主要从事水工环地质研究工作。E-mail: songxggtzx@163.com

    通讯作者:

    胡斌(1989-), 男, 主要从事水文地球化学方面研究工作。E-mail: binhu@rcess.ac.cn

  • 中图分类号: P641;X141

Analysis of high-fluoride groundwater formation mechanisms and assessment of health risk in Baxia region, Zhangjiakou

  • 摘要: 为了明晰张家口坝下地区高氟地下水的成因,探究其对当地居民饮用水安全的潜在影响,采集了391组潜水样品(井深≤ 100 m),通过水化学分析法、图解法、离子比例法、饱和指数计算法等对高氟地下水的分布与成因进行了分析,并利用美国EPA非致癌健康风险评价模型对四类受体人群进行健康风险评价。结果表明,研究区高氟地下水(ρ(F-)>1.5 mg/L)主要分布在地势低洼、高氟岩浆岩下游的山前地带、封闭式小盆地、沿河两侧的径流滞缓区等地区,其主要机制主要包括矿物风化溶解作用、碱性环境下的晶格置换作用和阳离子交换作用;盐效应会影响研究区地下水中F-富集,但不是高氟地下水的主要成因;农业活动与地下水中F-的富集无关。此外,坝下地区分布的电厂、钢铁厂等是永定河水系的潜在污染源,对高氟地下水形成的影响不容忽视。研究区婴儿、儿童、成年男性和成年女性的平均健康风险指数依次为1.20,0.74,0.69,0.56,呈现出受体年龄越小,风险越高;女性对含氟地下水的抗风险能力优于男性的特征。建议针对高风险区发展多水源联合供水模式,提升退氟改水工程效率,保障区域供水安全。

     

  • 图 1  研究区水文地质简图(a)与特征水文地质剖面图(b)

    Figure 1.  Hydrogeological schematic map of study area (a) and hydrogeological profile of the study area (b)

    图 2  研究区地下水Piper三线图

    Figure 2.  Piper diagram of groundwater in the study area

    图 3  研究区地下水样的Gibbs图

    Figure 3.  Gibbs diagram of groundwater samples in the study area

    图 4  水-岩相互作用中不同矿物对地下水化学形成贡献分析图

    Figure 4.  Plot of contribution of different minerals to groundwater chemical formation during water-rock interaction processes

    图 5  研究区ρ(F-)的空间分布图

    Figure 5.  Spatial distribution of fluoride concentration of groundwater in the study area

    图 6  研究区地下水中萤石(fl)与方解石(cal)(a)、白云石(dol)与方解石(cal)(b)的饱和指数关系,ρ(Ca2+)与ρ(Mg2+)关系(c),萤石饱和指数与ρ(F-)(d)关系图

    Figure 6.  Plots of relationships between SIfl and SIcal(a), SIdol and SIcal(b), Ca2+ and Mg2+ concentration(c), SIfl and F- concentration(d), respectively, in groundwater in the study area

    图 7  地下水中F-ρ(Ca2+)对比图

    Figure 7.  Comparison diagram of F- vs.Ca2+ concentration in groundwater

    图 8  γ(Cl-)-γ(Na+)-γ(K+)与γ(HCO3-)+γ(SO42-)-γ(Ca2+)-γ(Mg2+)的线性相关性分析(a)与氯碱指数分析图(b)

    Figure 8.  Diagrams of linear correlation analysis between γ(Cl-)-γ(Na+)-γ(K+) and γ(HCO3-)+γ(SO42-)-γ(Ca2+)-γ(Mg2+) (a) and relationship between chlor-alkali indices and F- concentration (b)

    图 9  研究区地下水ρ(F-)与ρ(Na+),ρ(Cl-),ρ(SO42-),ρ(NO3-)关系对比图

    Figure 9.  Plot of relationship between F- and Na+, Cl-, SO42- and NO3- concentration in groundwater in the study area

    图 10  研究区潜水含水层氟对不同受体人群的健康风险评价

    Figure 10.  Spatial distribution of health risk assessment of fluoride in the unconfined aquifer for different receptors in the study area

    表  1  坝下地区各地下水系统的补、径、排条件差异分析

    Table  1.   Analysis of differences of recharge, runoff and discharge conditions of different groundwater systems in Baxia region

    地下水系统 补给条件 径流条件 排泄条件
    永定河 ①大气降水入渗补给
    ②山区侧向径流补给、地表渗漏补给、灌溉回归水补给等
    地下水径流方向基本和地形一致,由西北向东南径流 ①分散小泉或沿沟谷潜流渗透(基岩山区裂隙水)
    ②大泉集中排泄或侧向径流排泄(基岩山区岩溶水)
    ③溢出带泉流排泄和人工开采为主(盆地区冲洪积扇)
    ④潜水蒸发和潜流向下游排泄(河道带)
    ⑤人工开采
    潮白河 ①大气降水入渗补给
    ②地表水的入渗补给(河道中、下游地段)
    ①运移方向与地形坡向基本一致
    ②受构造控制,在断裂带附近和断层谷中形成通道式径流
    ①泉排泄
    ②泄流排泄
    ③人工开采(沟谷地带)
    大清河 ①大气降水入渗补给
    ②井灌回归补给
    地下水径流方向与地表水一致,沿地势自北向南沿沟谷及河道径流 ①人工开采
    ②侧向径流排泄
    ③泉水溢出排泄
    下载: 导出CSV

    表  2  健康风险评价参数取值

    Table  2.   Parameter values for health risk assessment

    参数 婴儿 儿童 成年男性 成年女性
    非致癌物经饮水途径的日摄入剂量/(mg·k-1·d-1)[22] 0.06 0.06 0.06 0.06
    平均日摄水量/(L·d-1)[23] 0.65 1.5 3.62 2.66
    平均体重/kg[24] 6.94 25.9 69.6 59
    平均寿命/d 182.5 2 190 10 680 10 680
    暴露频率/(d·a-1) 365 365 365 365
    暴露持续时间/a[23] 0.5 6 30 30
    下载: 导出CSV

    表  3  研究区地下水水化学参数统计

    Table  3.   Statistics of groundwater hydrochemical parameters in the study area

    水化学参数 pH值 K+ Na+ Ca2+ Mg2+ HCO3-
    ρB/(mg·L-1)
    最大值~最小值 9.31~7.06 36.1~0.01 588.8~2.30 197.19~3.16 145.34~0.05 949.43~52.44
    平均值 7.85 2.36 62.05 53.70 27.71 291.63
    水化学参数 Cl- SO42- NO3- F- TDS
    ρB/(mg·L-1) ρB/(g·L-1)
    最大值~最小值 1 323.11~2.84 428.27~1.42 835.4~3.20 8.28~0.02 4.07~0.09
    平均值 43.11 38.21 64.27 0.77 0.72
    下载: 导出CSV

    表  4  研究区地下水中典型矿物的饱和指数统计

    Table  4.   Statistics of saturation indices of the typical minerals in groundwater in the study area

    典型矿物饱和指数 SIfl SIcal SIdol SIgyp SIhal
    最大值~最小值 -0.09~-4.06 1.42~-0.73 3.44~-1.24 -1.11~-3.65 -5.31~-9.69
    平均值 -2.16 0.49 1.37 -2.27 -7.68
    注:SIfl.萤石饱和指数;SIcal.方解石饱和指数;SIdol.白云石饱和指数;SIhal.石盐饱和指数;SIgyp.石膏饱和指数
    下载: 导出CSV

    表  5  研究区含氟地下水健康风险评价结果

    Table  5.   Results of health risk assessment for F-bearing groundwater in the study area

    受体人群 健康风险指数HI HI > 1样品数 超标率/%
    最小值 最大值 平均值
    婴儿 0.00 12.93 1.20 174 44.5
    儿童 0.00 7.99 0.74 77 19.7
    成年男性 0.00 11.20 0.69 75 19.2
    成年女性 0.00 6.01 0.56 38 9.7
    下载: 导出CSV
  • [1] 徐斌, 张艳. 基于GIS的泾惠渠灌区地下水污染人体健康风险评价[J]. 农业环境科学学报, 2018, 37(5): 992-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201805019.htm

    Xu B, Zhang Y. GIS-based human health risk assessment of groundwater contamination in the Jinghuiqu irrigation district of China[J]. Journal of Agro-Environment Science, 2018, 37(5): 992-1000(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201805019.htm
    [2] Zhang L, Huang D, Yang J, et al. Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemicfluorosis areas[J]. Environmental Pollution, 2017, 222: 118-125. doi: 10.1016/j.envpol.2016.12.074
    [3] World Health Organization. Boron in drinking-water: Background document for development of WHO guidelines for drinking-water quality[C]//Anon. Guidelines for drinking-water quality. [S. l.]: World Health Organization, 2004.
    [4] 中华人民共和国国家卫生健康委员会. 生活饮用水卫生标准: GB 5749-2006[S]. 北京: 中国标准出版社, 2006.

    National Health Commission of the People's Republic of China. Standards for drinking water quality: GB 5749-2006[S]. Beijing: Standards Press of China, 2006(in Chinese).
    [5] 中华人民共和国生态环境部. 地下水质量标准: GB/T 14848-2017[S]. 北京: 中国标准出版社, 2017.

    Ministry of Ecology and Environment of the People's Republic of China. Standards for drinking water quality: GB/T 14848-2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
    [6] 邓安利, 王敏黛, 王帅, 等. 高氟孔隙地下水地球化学成因: 以山西东山调水工程区为例[J]. 地质科技情报, 2015, 34(6): 169-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506024.htm

    Deng A L, Wang M D, Wang S, et al. Geochemical genesis of high-fluoride groundwater: A case study in the import region of the Dongshan water transfer project, Shanxi Province[J]. Geological Science and Technology Information, 2015, 34(6): 169-175(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506024.htm
    [7] 梁川, 苏春利, 吴亚, 等. 大同盆地高氟地下水的分布特征及形成过程分析[J]. 地质科技情报, 2014, 33(2): 154-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402026.htm

    Liang C, Su C L, Wu Y, et al. Distribution and geochemical processes for the formation of high fluoride groundwater in Datong Basin[J]. Geological Science and Technology Information, 2014, 33(2): 154-159(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402026.htm
    [8] 潘欢迎, 邹常健, 毕俊擘, 等. 新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J]. 地质科技通报, 2021, 40(3): 194-203. doi: 10.19509/j.cnki.dzkq.2021.0312

    Pan H Y, Zou C J, Bi J B, et al. Hydrochemical characteristics and fluoride enrichment mechanisms of high-fluoride groundwater in a typical piedmont proluvial fan in Aksu area, Xinjiang, China[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 194-203(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0312
    [9] 徐颖, 李梦雪, 董心月, 等. 氟化工园区及周边地下水健康风险及脆弱性评价[J]. 环境科学学报, 2020, 40(6): 2300-2310. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202006041.htm

    Xu Y, Li M X, Dong X Y, et al. Health risk and vulnerability assessment of groundwater in fluorine chemical industrial and surrounding areas[J]. Acta Scientiae Circumstantiae, 2020, 40(6): 2300-2310(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202006041.htm
    [10] Rashid A, Farooqi A, Gao X, et al. Geochemical modeling, source apportionment, health risk exposure and control of higher fluoride in groundwater of sub-district Dargai, Pakistan[J]. Chemosphere, 2020, 243: 125409. doi: 10.1016/j.chemosphere.2019.125409
    [11] Parvaiz A, Khattak J A, Hussain I, et al. Salinity enrichment, sources and its contribution to elevated groundwater arsenic and fluoride levels in Rachna Doab, Punjab Pakistan: Stable isotope(δ2H and δ18O) approach as an evidence[J]. Environmental Pollution, 2021, 268: 115710. doi: 10.1016/j.envpol.2020.115710
    [12] 吕晓立, 刘景涛, 周冰, 等. 塔城盆地地下水氟分布特征及富集机理[J]. 地学前缘, 2021, 28(2): 426-436. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102031.htm

    Lü X L, Liu J T, Zhou B, et al. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Baisn[J]. Earth Science Frontiers, 2021, 28(2): 426-436(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102031.htm
    [13] Su C, Wang Y, Xie X, et al. An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin, Northern China[J]. Environmental Science Process Impacts, 2015, 17(4): 791-801. doi: 10.1039/C4EM00584H
    [14] Li J, Wang Y, Zhu C, et al. Hydrogeochemical processes controlling the mobilization and enrichment of fluoride in groundwater of the North China Plain[J]. Science of the Total Environment, 2020, 730: 138877. doi: 10.1016/j.scitotenv.2020.138877
    [15] 杨志光, 尤冰, 霍秋雅. 张家口市下花园区地下水中氟的分布规律及成因探讨[J]. 西部探矿工程, 2020, 32(10): 107-110. doi: 10.3969/j.issn.1004-5716.2020.10.035

    Yang Z G, You B, Huo Q Y. The distribution and mechanism discussion of fluoride in the groundwater in the Xiahuayuan District, Zhangjiakou City[J]. West-China Exploration Engineering, 2020, 32(10): 107-110(in Chinese with English abstract). doi: 10.3969/j.issn.1004-5716.2020.10.035
    [16] 中华人民共和国生态环境部. 水质采样样品的保存和管理技术规定: HJ 493-2009[S]. 北京: 中国标准出版社, 2009.

    Ministry of Ecology and Environment of the People's Republic of China. Water quality sampling-technical regulation of the preservation and handling of samples: HJ 493-2009[S]. Beijing: Standards Press of China, 2009(in Chinese).
    [17] Zimmer K, Zhang Y, Lu P, et al. SUPCRTBL: A revised and extended thermodynamic dataset and software package of SUPCRT92[J]. Computers & Geosciences, 2016, 90: 97-111.
    [18] Parkhurst D, Appelo C. Description of input and examples for PHREEQC version 3: A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[M]. Colorado: U S Geological Survey, 2013.
    [19] Zhang Y, Hu B, Teng Y, et al. A library of BASIC scripts of reaction rates for geochemical modeling using PHREEQC[J]. Computers & Geosciences, 2019, 133: 104316.
    [20] Wang W, Duan L, Yang X, et al. Shallow groundwater hydro-chemical evolution and simulation with special focus on Guanzhong Basin, China[J]. Environmental Engineering and Management Journal, 2013, 12(7): 1447-1455. doi: 10.30638/eemj.2013.178
    [21] Schoeller H. Qualitative evaluation of groundwater resources: Methods and techniques of groundwater investigation and development[J]. Water Research, 1967, 33: 44-52.
    [22] US EPA. Available information on assessment exposure from pesticides in food[R]. Washington D C: U.S. Environmental Protection Agency Office of Pesticide Programs, 2000.
    [23] Yin S, Xiao Y, Han P, et al. Investigation of groundwater contamination and health implications in a typical semiarid basin of North China[J]. Water, 2020, 12(4): 1137. doi: 10.3390/w12041137
    [24] 中华人民共和国国家卫生健康委员会. 中国居民营养与慢性病状况报告(2020年)[M]. 北京: 人民卫生出版社, 2020.

    National Health Commission of the People's Republic of China. Report on Chinese residents' chronic diseases and nutrition(2020)[M]. Beijing: People's Medical Publishing House, 2020(in Chinese).
    [25] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103
    [26] Su C, Wang Y, Xie X, et al. Aqueous geochemistry of high-fluoride groundwater in Datong Basin, Northern China[J]. Journal of Geochemical Exploration, 2013, 135(1): 79-92.
    [27] Xiao J, Jin Z, Zhang F. Geochemical controls on fluoride concentrations in natural waters from the middle Loess Plateau, China[J]. Journal of Geochemical Exploration, 2015, 159: 252-261. doi: 10.1016/j.gexplo.2015.09.018
    [28] 左锐, 谷鹏, 滕彦国, 等. 下辽河平原高氟地下水空间分布及成因分析[J]. 水文地质工程地质, 2015, 42(3): 135-141. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201503025.htm

    Zui R, Gu P, Teng Y G, et al. Spatial distribution and genesis of the high-fluorine groundwater in the Lower Liaohe River Plain[J]. Hydrogeology & Engineering Geology, 2015, 42(3): 135-141(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201503025.htm
    [29] Gao X, Wang Y, Li Y, et al. Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng Basin, northern China[J]. Environmental Geology, 2007, 53(4): 795-803. doi: 10.1007/s00254-007-0692-z
    [30] 胡斌, 滕彦国, 李腾飞, 等. 傍河水源地取水井堵塞特征及缓解途径概述[J]. 地质科技情报, 2016, 35(4): 178-183, 191. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604028.htm

    Hu B, Teng Y G, Li T F, et al. Clogging characteristics of riverbank filtration on wells and its alleviating approaches[J]. Geological Science and Technology Information, 2016, 35(4): 178-183, 191(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604028.htm
    [31] Hu B, Teng Y G, Zhai Y Z, et al. Riverbank filtration in China: A review and perspective[J]. Journal of Hydrology, 2016, 541: 914-927. doi: 10.1016/j.jhydrol.2016.08.004
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  783
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-31
  • 网络出版日期:  2022-03-02

目录

    /

    返回文章
    返回