留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晚泥盆世大陆风化作用增强及其海洋环境效应:来自华南碳酸盐岩锶同位素的制约

邓发亮 刘希军 余红霞 杨锋 袁永海

邓发亮, 刘希军, 余红霞, 杨锋, 袁永海. 晚泥盆世大陆风化作用增强及其海洋环境效应:来自华南碳酸盐岩锶同位素的制约[J]. 地质科技通报, 2022, 41(4): 207-214. doi: 10.19509/j.cnki.dzkq.2021.0071
引用本文: 邓发亮, 刘希军, 余红霞, 杨锋, 袁永海. 晚泥盆世大陆风化作用增强及其海洋环境效应:来自华南碳酸盐岩锶同位素的制约[J]. 地质科技通报, 2022, 41(4): 207-214. doi: 10.19509/j.cnki.dzkq.2021.0071
Deng Faliang, Liu Xijun, Yu Hongxia, Yang Feng, Yuan Yonghai. Enhanced continental weathering and its marine environmental effects in the late Devonian: Constraints from strontium isotopes of carbonate rocks in South China[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 207-214. doi: 10.19509/j.cnki.dzkq.2021.0071
Citation: Deng Faliang, Liu Xijun, Yu Hongxia, Yang Feng, Yuan Yonghai. Enhanced continental weathering and its marine environmental effects in the late Devonian: Constraints from strontium isotopes of carbonate rocks in South China[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 207-214. doi: 10.19509/j.cnki.dzkq.2021.0071

晚泥盆世大陆风化作用增强及其海洋环境效应:来自华南碳酸盐岩锶同位素的制约

doi: 10.19509/j.cnki.dzkq.2021.0071
基金项目: 

广西自然科学基金杰出青年科学基金项目 2018GXNSFFA281009

广西八桂学者项目 2018, 有色金属成矿理论与勘查技术

详细信息
    作者简介:

    邓发亮(1992—), 男, 现正攻读地球化学专业博士学位, 主要从事地球化学研究工作。E-mail: 943687331@qq.com

    通讯作者:

    余红霞(1986—), 女, 实验师,主要从事同位素地球化学研究工作。E-mail: 405244819@qq.com

  • 中图分类号: P597;P534.44

Enhanced continental weathering and its marine environmental effects in the late Devonian: Constraints from strontium isotopes of carbonate rocks in South China

  • 摘要:

    上泥盆统弗拉斯阶和法门阶界线附近发生了大规模的生物灭绝, 其起因被认为是植物登陆导致的陆地化学风化作用加强及其引起的海洋水体缺氧所致, 但其直接证据还比较缺乏。运用广西地区广泛发育的浅海碳酸盐岩中锶元素(Sr)和同位素(87Sr/86Sr)、铀钍比值(U/Th)记录, 探究了从中泥盆统到下石炭统的陆地化学风化速率及海水氧化还原条件的变化。研究结果表明, 在晚泥盆世(法门阶早期)陆地化学风化作用加强, 导致海水中Sr浓度升高, 及更富集重的Sr同位素组分; 低的U/Th比值也显示该时期水体缺氧严重, 海水中U元素被还原到沉积物中, 导致海水中的U浓度降低。陆地表面化学风化的加强对晚泥盆世海洋水体氧化还原条件的波动以及海洋生物的灭绝有重要影响。

     

  • 图 1  研究区域地质图和采样点位置

    Figure 1.  A simplified geological map of the study area and sample locations

    图 2  研究剖面的采样位置和样品岩性描述

    Figure 2.  Sample location and lithological descriptions

    图 3  镜下矿物组成(a.正交镜下)和化石(b.偏光镜下)

    Figure 3.  Micrographs of mineral assemblage (a) and fossils (b)

    图 4  研究剖面的地球化学曲线

    a.w(Sr)变化曲线;b.锶同位素(87Sr/86Sr)变化曲线,Sr同位素高值表示陆源输入量大;c.U/Th值变化曲线,碳酸盐岩U/Th值越高表明水体越氧化

    Figure 4.  Geochemical variation curves of the studied lithological section

    图 5  U/Th和Sr同位素的散点图

    红色的点表示五指山组下部的样品,黑色的点表示东岗岭组、五指山顶部和岩关组的样品

    Figure 5.  Scatter plots of U/Th and Sr isotopes

    表  1  Sr同位素、Sr、Th、U质量分数和U/Th比值

    Table  1.   Sr isotope, Sr, Th and U concentrations, and U/Th ratios

    样品编号 87Sr/86Sr RSD/ 10-6 Sr Th U U/Th
    wB/10-6
    2016YD-001 0.709 713 6.614 6 102 0.31 0.59 1.93
    2016YD-002 0.709 084 11.076 6 33 0.06 0.28 5.07
    2016YD-003 0.710 457 16.466 3 40.7 0.15 0.58 3.96
    2016YD-004 0.708 131 14.563 1 167 0.11 1.04 9.68
    2016YD-005 0.708 145 16.646 6 108 0.13 1.64 12.90
    2016YD-006 0.708 048 11.708 1 295 0.24 1.86 7.72
    2016YD-007 0.708 704 12.870 3 47.7 0.15 0.59 3.91
    2016YD-008 0.708 414 18.139 7 2 037 0.24 1.88 7.91
    2016YD-009 0.708 114 11.554 8 263 0.09 0.52 5.80
    2016YD-010 0.711 489 17.995 7 265 3.48 0.83 0.24
    2016YD-011 0.710 455 16.073 6 614 4.01 0.84 0.21
    2016YD-012 0.710 131 16.522 1 154 1.05 0.70 0.67
    2016YD-013 0.708 340 17.426 4 723 0.07 0.27 3.86
    2016YD-014 0.707 987 16.349 6 341 0.06 0.35 6.12
    下载: 导出CSV
  • [1] Algeo T J, Berner R A, Maynard J B, et al. Late Devonian oceanic anoxic events and biotic crises: "Rooted" in the evolution of vascular land plants[J]. GSA Today, 1995, 5: 45-66.
    [2] Xue J Z, Deng Z, Huang P, et al. Belowground rhizomes in paleosols: The hidden half of an Early Devonian vascular plant[J]. Proceedings of the National Academy of Sciences, 2016, 113: 9451-9456. doi: 10.1073/pnas.1605051113
    [3] Shen J, Schoepfer S D, Feng Q L, et al. Marine productivity changes during the end-Permian crisis and Early Triassic recovery[J]. Earth-Science Reviews, 2015, 149: 136-162. doi: 10.1016/j.earscirev.2014.11.002
    [4] 王德明, 熊聪慧. 中国早期陆生维管植物演化, 古地理和古环境研究进展[J]. 古生物学报, 2014, 53(1): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX201401009.htm

    Wang D M, Xiong C H. Progress of studies on early land vascular plant evolution, palaeogeography and palaeoenvironment in China[J]. Acta Palaeontologica Sinica, 2014, 53(1): 101-107(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX201401009.htm
    [5] 薛进庄, 郝守刚. 志留纪-早泥盆世维管植物的系统发育、幕式演化和地理分布: 植物大化石证据[J]. 古地理学报, 2014, 16(6): 861-877. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201406009.htm

    Xue J Z, Hao S G. Phylogeny, episodic evolution and geographic distribution of the Silurian-Early Devonian vascular plants: Evidences from plant megafossils[J]. Journal of Palaeogeography, 2014, 16(6): 861-877(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201406009.htm
    [6] Retallack G J. Early forest soils and their role in Devonian global change[J]. Science, 1997, 276: 583-585. doi: 10.1126/science.276.5312.583
    [7] Ma X, Gong Y, Chen D, et al. The Late Devonian Frasnian-Famennian Event in South China : Patterns and causes of extinctions, sea level changes, and isotope variations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 224-244. doi: 10.1016/j.palaeo.2015.10.047
    [8] Raup D M, Sepkoski J Jr. Mass extinctions in the marine fossil record[J]. Science, 1982, 215: 1501-1503. doi: 10.1126/science.215.4539.1501
    [9] Bond D, Wignall P B, Racki G. Extent and duration of marine anoxia during the Frasnian-Famennian(Late Devonian) mass extinction in Poland, Germany, Austria and France[J]. Geological Magazine, 2004, 141: 173-193. doi: 10.1017/S0016756804008866
    [10] Racki G, Rakociński M, Marynowski L, et al. Mercury enrichments and the Frasnian-Famennian biotic crisis: A volcanic trigger proved?[J]. Geology, 2018, 46: 543-546.
    [11] Wignall P B. Large igneous provinces and mass extinctions[J]. Earth-Science Reviews, 2001, 53: 1-33. doi: 10.1016/S0012-8252(00)00037-4
    [12] 沈俊, 施张燕, 冯庆来. 古海洋生产力地球化学指标的研究[J]. 地质科技情报, 2011, 30(2): 69-77. doi: 10.3969/j.issn.1000-7849.2011.02.012

    Shen J, Shi Z Y, Feng Q L. Review on geochemical proxies in paleo-productivity studies[J]. Geological Science and Technology Information, 2011, 30(2): 69-77(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2011.02.012
    [13] 张明亮, 郭伟, 沈俊, 等. 古海洋氧化还原地球化学指标研究新进展[J]. 地质科技情报, 2017, 36(4): 95-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704012.htm

    Zhang M L, Guo W, Shen J, et al. New progress on geochemical indicators of ancient oceanic redox condition[J]. Geological Science and Technology Information, 2017, 36(4): 95-106(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704012.htm
    [14] 陈友智, 朱望明. 鄂尔多斯地块南缘中元古界沉积岩地球化学特征[J]. 地质科技情报, 2019, 38(3): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903008.htm

    Chen Y Z, Zhu W M. Geochemical characteristics of Mesoproterozoic sedimentary rock in the southern margin of Ordos Block[J]. Geological Science and Technology Information, 2019, 38(3): 81-87(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903008.htm
    [15] 周铂文, 陈红汉, 云露, 等. 塔里木盆地顺北地区一间房组台地碳酸盐岩异常泥质含量与断裂带距离及裂缝发育关系[J]. 地质科技通报, 2020, 39(6): 93-102. doi: 10.19509/j.cnki.dzkq.2020.0609

    Zhou B W, Chen H H, Yun L, et al. Relationship between argillaceous content and distance to main faulted zone and fractures development in the platform carbonate rocks of Yijianfang Formation in Shunbei area, Tarim Basin[J]. Bulletin ofGeological Science and Technology, 2020, 39(6): 93-102(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0609
    [16] 吴利杰, 石建省, 张翼龙, 等. 河套盆地东部第四纪中晚期介形类特征及其沉积环境意义[J]. 地质力学学报, 2020, 26(1): 125-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202001014.htm

    Wu L J, Shi J S, Zhang Y L, et al. Ostracod characteristics of the eastern Hetao Basin and its sedimentary environmental significance during the Middle and Late Quaternary[J]. Journal of Geomechanics, 2020, 26(1): 125-134(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202001014.htm
    [17] 李镇梁. 桂林不同沉积相泥盆-石炭系界线[J]. 中国区域地质, 1992, 1(2): 97-110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD199202000.htm

    Li Z L. The Devonian-Carboniferous boundary of different sedimentary facies in Guilin[J]. Regional Geology of China, 1992, 1(2): 97-110(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD199202000.htm
    [18] Elderfield H. Strontium isotope stratigraphy[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1986, 57: 71-90. doi: 10.1016/0031-0182(86)90007-6
    [19] Veizer J, Buhl D, Diener A, et al. Strontium isotope stratigraphy: Potential resolution and event correlation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132: 65-77. doi: 10.1016/S0031-0182(97)00054-0
    [20] Richter F M, Rowley D B, DePaolo D J. Sr isotope evolution of seawater: The role of tectonics[J]. Earth and Planetary Science Letters, 1992, 109: 11-23. doi: 10.1016/0012-821X(92)90070-C
    [21] Palmer M, Elderfield H. Sr isotope composition of sea water over the past 75 Myr[J]. Nature, 1985, 314: 526-528. doi: 10.1038/314526a0
    [22] Anderson R. Redox behavior of uranium in an anoxic marine basin[J]. Uranium, 1987, 3: 145-164.
    [23] 李献华, 刘颖, 涂湘林, 等. 硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定: 酸溶与碱熔分解样品方法的对比[J]. 地球化学, 2002, 31(3): 289-294. doi: 10.3321/j.issn:0379-1726.2002.03.010

    Li X H, Liu Y, Tu X L, et al. Precise determination of chemical compositions in silicate rocks using ICP-AES and ICP-MS: A comparative study of sample digestion techniques of alkali fusion and acid dissolution[J]. Geochimica, 2002, 31(3): 289-294(in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2002.03.010
    [24] 刘颖, 刘海臣, 李献华. 用ICP-MS准确测定岩石样品中的40余种微量元素[J]. 地球化学, 1996, 25(6): 552-558. doi: 10.3321/j.issn:0379-1726.1996.06.004

    Liu Y, Liu H C, Li X H. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS[J]. Geochimica, 1996, 25(6): 552-558(in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.1996.06.004
    [25] McArthur J M. Recent trends in strontium isotope stratigraphy[J]. Terranova, 1994, 6: 331-358.
    [26] 邹洁琼, 余红霞, 王保弟, 等. 南拉萨地块中部早侏罗世仁钦则花岗闪长岩成因及其地质意义[J]. 地球科学, 2018, 43(8): 2795-2810. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201808020.htm

    Zhou J Q, Yu H X, Wang B D, et al. Petrogenesis and geological implications of Early Jurassic granodiorites in Renqinze Area, Central Part of Southern Lhasa Subterrane[J]. Earth Science, 2018, 43(8): 2795-2810(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201808020.htm
    [27] Chen D Z, Qing H, Li R. The Late Devonian Frasnian-Famennian(F/F) biotic crisis: Insights from δ13Ccarb, δ13Corg and 87Sr/86Sr isotopic systematics[J]. Earth and Planetary Science Letters, 2005, 235: 151-166. doi: 10.1016/j.epsl.2005.03.018
    [28] Percival L, Selby D, Bond D, et al. Pulses of enhanced continental weathering associated with multiple Late Devonian climate perturbations: Evidence from osmium-isotope compositions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 524: 240-249. doi: 10.1016/j.palaeo.2019.03.036
    [29] Turgeon S C, Creaser R A, Algeo T J. Re-Os depositional ages and seawater Os estimates for the Frasnian-Famennian boundary: Implications for weathering rates, land plant evolution, and extinction mechanisms[J]. Earth and Planetary Science Letters, 2007, 261: 649-661. doi: 10.1016/j.epsl.2007.07.031
    [30] Wang X, Liu S A, Wang Z, et al. Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian(~372 Ma) mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 498: 68-82. doi: 10.1016/j.palaeo.2018.03.002
    [31] Kaiho K, Yatsu S, Oba M, et al. A forest fire and soil erosion event during the Late Devonian mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 392: 272-280. doi: 10.1016/j.palaeo.2013.09.008
    [32] Huang C, Song J J, Shen J, et al. The influence of the Late Devonian Kellwasser events on deep-water ecosystems: Evidence from palaeontological and geochemical records from South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 504: 60-74. doi: 10.1016/j.palaeo.2018.05.006
    [33] Shen J, Lei Y, Algeo T J, et al. Volcanic effects on microplankton during the Permian-Triassic Transition(Shangsi and Xinmin, South China)[J]. Palaios, 2013, 28: 552-567. doi: 10.2110/palo.2013.p13-014r
    [34] Uveges B T, Junium C K, Boyer D L, et al. Biogeochemical controls on black shale deposition during the Frasnian-Famennian biotic crisis in the Illinois and Appalachian basins, USA, inferred from stable isotopes of nitrogen and carbon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 531: 108787. doi: 10.1016/j.palaeo.2018.05.031
    [35] Huang C, Joachimski M M, Gong Y M. Did climate changes trigger the Late Devonian Kellwasser Crisis: Evidence from a high-resolution conodont δ18OPO4 record from South China[J]. Earth and Planetary Science Letters, 2018, 495: 174-184. doi: 10.1016/j.epsl.2018.05.016
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  458
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-29
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回