Numerical simulation of CO2 sequestration in sandstone aquifers with feedback effect of salt precipitation: A case study of Ordos Basin
-
摘要: 盐沉淀是含水层CO2封存中需要关注的问题。当前,大多数数值模拟没有考虑盐沉淀引起的地层孔隙度和渗透率变化对流体流动的反馈作用。以鄂尔多斯盆地刘家沟组地层为例,利用TOUGH2软件建立了一个二维模型。通过修改程序源代码,使得模型能考虑盐沉淀对流体流动的反馈作用。模拟结果表明,刘家沟组地层在CO2注入20 a时,盐沉淀的反馈作用使得注入井附近地层压力提升达到了0.87MPa,储层注入性损失7.17%。地层水盐度对盐沉淀及其反馈作用的影响最大,CO2注入速度的影响次之,地层渗透率的影响最小。在地层水盐度较高时,固体盐饱和度显著增加,从而造成地层渗透率明显下降。当地层水盐度为0.24时,盐沉淀造成注入性损失45.32%,引起的地层压力提升达到了12.14MPa。因此,需要特别关注高盐度地层水引起的盐沉淀及其反馈作用。Abstract: Salt precipitation is an important issue for CO2 sequestration in deep aquifers.At present, most numerical simulations ignore the feedback effect of the changes in the porosity and permeability caused by the salt precipitation on fluid flow.In this paper, taking Liujiagou Formation in Ordos Basin as an example, a two-dimensional model is established using TOUGH2 code.By modifying the source code of the program, the model can consider the feedback effect of salt precipitation on fluid flow.The simulation results show that after the CO2 injection into the Liujiagou Formation for 20 years, salt precipitation makes the formation pressure near the injection well increase by 0.87MPa and the corresponding injectivity loss of the formation is 7.17%.The salinity has the greatest influence on salt precipitation and its feedback, followed by CO2 injection rate, and permeability has the least influence.When the salinity is high, solid salt saturation increases significantly, resulting in a great decrease in the permeability.In this study, when the salinity was 0.24, the salt precipitation caused an injectivity loss by 45.32% and the pressure buildup up to 12.14 MPa.Therefore, special attention should be paid to the salt precipitation caused by high salinity and its feedback effect during CO2 storage.
-
Key words:
- CO2 geological storage /
- salt precipitation /
- permeability decrease /
- formation pressure /
- injectivity /
- TOUGH2
-
表 1 相对渗透率模型和毛细压力模型的参数设置
Table 1. Values of the parameter of the relative permeability model and capillary pressure model
相对渗透率函数(VanGenuchten-Mualem和Corey模型) 毛细管压力函数(VanGenuchten模型) 液态 $K_{\mathrm{r} 1}=\sqrt{S^{*}}\left\{1-\left(1-\left[S^{*}\right]^{1 / \lambda}\right)^{\lambda}\right\}^{2}$
$S^{*}=\left(S_{1}-S_{1 {\rm{r}}}\right) /\left(S_{1 {\rm{s}}}-S_{1 {\rm{r}}}\right) \quad $
形状参数λ=0.457
残余液体饱和度Slr=0.30$P_{\text {cap }}=-P_{0}\left(\left[S^{*}\right]^{-1 / \lambda}-1\right)^{1-\lambda}$
$S^{*}=\left(S_{1}-S_{1 {\rm{r}}}\right) /\left(S_{1 {\rm{s}}}-S_{1 {\rm{r}}}\right)$
形状参数λ=0.457
残余液体饱和度Slr=0气态 $\begin{aligned}K_{\mathrm{rg}}=(1-\hat S)^{2}\left(1-\hat S^{2}\right)\end{aligned}$
$\hat S=\left(S_{1}-S_{\mathrm{lr}}\right) /\left(1-S_{\mathrm{lr}}-S_{\mathrm{gr}}\right)$
残余气体饱和度Sgr=0.05进气压力P0=19.61 kPa
毛细压力的最大值Pmax=1×107
Pa注:Krl.液态相对渗透系数;Krg.气态相对渗透系数;S1.残余饱和度;Sls.残余固体饱和度;Slr.残余液体饱和度;Pcap.毛细管压力 表 2 不同算例的参数设置
Table 2. Values of the parameter in the different cases
算例 地层参数设置 地层水盐度 CO2注入速率/(kg·s-1) 备注 孔隙度 渗透率/10-3μm2 A 0.1 2.81 0.06 3.170 基础算例 B1 0.1 2.81 0.015 3.170 盐度减少4倍 评估盐度的影响 B2 0.1 2.81 0.03 3.170 盐度减少2倍 B3 0.1 2.81 0.12 3.170 盐度增加2倍 B4 0.1 2.81 0.24 3.170 盐度增加4倍 C1 0.1 5.62 0.06 3.170 渗透率增加2倍 评估渗透率的影响 C2 0.1 8.43 0.06 3.170 渗透率增加3倍 C3 0.1 11.24 0.06 3.170 渗透率增加4倍 D1 0.1 2.81 0.06 1.585 CO2注入速率减少1/2 评估CO2注入速率的影响 D2 0.1 2.81 0.06 2.378 CO2注入速率减少1/4 D3 0.1 2.81 0.06 3.963 CO2注入速率增加1/4 D4 0.1 2.81 0.06 4.755 CO2注入速率增加1/2 -
[1] IPCC. Carbon dioxide capture and storage[M]. Cambridge: Cambridge University Press, 2005. [2] IEA. Energy technology perspectives[J]. International Energy Agency, 2008, 648: 2. [3] 曾荣树, 孙枢, 陈代钊, 等. 减少二氧化碳向大气层的排放: 二氧化碳地下储存研究[J]. 中国科学基金, 2004, 18(4): 196-200. doi: 10.3969/j.issn.1000-8217.2004.04.002Zeng R S, Sun S, Chen D Z, et al. Decrease carbon dioxide emission into the atmosphere: Underground disposal of carbon dioxide[J]. Bulletin of National Natural Science Foundation of China, 2004, 18(4): 196-200(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8217.2004.04.002 [4] 李小春, 方志明, 魏宁, 等. 我国CO2捕集与封存的技术路线探讨[J]. 岩土力学, 2009, 30(9): 2674-2678. doi: 10.3969/j.issn.1000-7598.2009.09.022Li X C, Fang Z M, Wei N, et al. Discussion on technical roadmap of CO2 capture and storage in China[J]. Rock and Soil Mechanics, 2009, 30(9): 2674-2678(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2009.09.022 [5] Ringrose P. The CCS hub in Norway: Some insights from 22 years of saline aquifer storage[J]. Energy Procedia, 2018, 146: 166-172. doi: 10.1016/j.egypro.2018.07.021 [6] Furre A K, Eiken O, Alnes H, et al. 20 years of monitoring CO2-injection at Sleipner[J]. Energy Procedia, 2017, 114(1): 3916-3926. http://www.onacademic.com/detail/journal_1000040062919910_4d6e.html [7] 李小春, 刘延锋, 白冰, 等. 中国深部咸水含水层CO2储存优先区域选择[J]. 岩石力学与工程学报, 2006, 25(5): 963-968. doi: 10.3321/j.issn:1000-6915.2006.05.015Li X C, Liu Y F, Bai B, et al. Ranking and screening of CO2 saline aquifer storage zones in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 963-968(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2006.05.015 [8] Bachu S, Adams J J. Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution[J]. Energy Conversion and Management, 2003, 44(20): 3151-3175. doi: 10.1016/S0196-8904(03)00101-8 [9] Bachu S, Gunter W, Perkins E. Aquifer disposal of CO2: Hydrodynamic and mineral trapping[J]. Energy Conversion and Management, 1994, 35(4): 269-279. doi: 10.1016/0196-8904(94)90060-4 [10] Miri R, Hellevang H. Salt precipitation during CO2 storage: A review[J]. International Journal of Greenhouse Gas Control, 2016, 51: 136-147. doi: 10.1016/j.ijggc.2016.05.015 [11] Pruess K, Müller N. Formation dry-out from CO2 injection into saline aquifers: 1. Effects of solids precipitation and their mitigation[J]. Water Resources Research, 2009: 45: W3402. [12] Lopez O, Youssef S, Estublier A, et al. Permeability alteration by salt precipitation: Numerical and experimental investigation using X-ray radiography[J]. E3S Web of Conferences, 2020, 146(A): 3001. http://www.researchgate.net/publication/339153218_Permeability_alteration_by_salt_precipitation_numerical_and_experimental_investigation_using_X-Ray_Radiography/download [13] He D, Jiang P X, Xu R N. Pore-scale experimental investigation of the effect of supercritical CO2 injection rate and surface wettability on salt precipitation[J]. Environmental Science & Technology, 2019, 53(24): 14744-14751. [14] Jie R, Wang Y, Zhang Y Q. A numerical simulation of a dry-out process for CO2 sequestration in heterogeneous deep saline aquifers[J]. Greenhouse Gases: Science and Technology, 2018, 8(6): 1090-1109. doi: 10.1002/ghg.1821 [15] Yang Z H, Wang W N, Zhang C Y, et al. Experimental study of drying effects during supercritical CO2 displacement in a pore network[J]. Microfluidics and Nanofluidics, 2018, 22(9): 101. doi: 10.1007/s10404-018-2122-9 [16] Jeddizahed J, Rostami B. Experimental investigation of injectivity alteration due to salt precipitation during CO2 sequestration in saline aquifers[J]. Advances in Water Resources, 2016, 96: 23-33. doi: 10.1016/j.advwatres.2016.06.014 [17] Ghafoori M, Tabatabaei-Nejad S, Khodapanah E. Modeling rock-fluid interactions due to CO2 injection into sandstone and carbonate aquifer considering salt precipitation and chemical reactions[J]. Journal of Natural Gas Science and Engineering, 2016, 37: 523-538. [18] André L, Peysson Y, Azaroual M. Well injectivity during CO2 storage operations in deep saline aquifers—Part 2: Numerical simulations of drying, salt deposit mechanisms and role of capillary forces[J]. International Journal of Greenhouse Gas Control, 2013, 22: 301-312. [19] Peysson Y, André L, Azaroual M. Well injectivity during CO2 storage operations in deep saline aquifers—Part 1: Experimental investigation of drying effects, salt precipitation and capillary forces[J]. International Journal of Greenhouse Gas Control, 2013, 22: 300-391. [20] 柯怡兵, 李义连, 张炜, 等. 岩盐沉淀对咸水层二氧化碳地质封存注入过程的影响: 以江汉盆地为例[J]. 地质科技情报, 2012, 31(3): 109-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201203018.htmKe Y B, Li Y L, Zhang W, et al. Impact of halite precipitation on CO2 injection into saline aquifers: A case study of Jianghan Basin[J]. Geological Science and Technology Information, 2012, 31(3): 109-115(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201203018.htm [21] Bacci G, Korre A, Durucan S. Experimental investigation into salt precipitation during CO2 injection in saline aquifers[J]. Energy Procedia, 2011, 4(22): 4450-4456. http://core.ac.uk/download/pdf/82095654.pdf [22] Zeidouni M, Pooladi-Darvish M, Keith D. Analytical solution to evaluate salt precipitation during CO2 injection in saline aquifers[J]. International Journal of Greenhouse Gas Control, 2009, 3: 600-611. doi: 10.1016/j.ijggc.2009.04.004 [23] Muller N, Qi R, Mackie E, et al. CO2 injection impairment due to halite precipitation[J]. Energy Procedia, 2009, 1(1): 3507-3514. doi: 10.1016/j.egypro.2009.02.143 [24] Bacci G, Korre A, Durucan S. An experimental and numerical investigation into the impact of dissolution/precipitation mechanisms on CO2 injectivity in the wellbore and far field regions[J]. International Journal of Greenhouse Gas Control, 2011, 5: 579-588. doi: 10.1016/j.ijggc.2010.05.007 [25] Kim M, Sell A, Sinton D. Aquifer on a chip: Understanding pore-scale salt precipitation dynamics during CO2 sequestration[J]. Lab on a Chip, 2013, 13(13): 2508-2518. doi: 10.1039/c3lc00031a [26] Meng Q, Jiang X, Li D, et al. Numerical simulations of pressure buildup and salt precipitation during carbon dioxide storage in saline aquifers[J]. Computers & Fluids, 2015, 121: 92-101. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0045793015002820&originContentFamily=serial&_origin=article&_ts=1440906384&md5=0e4bec39e18eb5792fede3b4a8ed25de [27] Miri R, van Noort R, Aagaard P, et al. New insights on the physics of salt precipitation during injection of CO2 into saline aquifers[J]. International Journal of Greenhouse Gas Control, 2015, 43: 10-21. doi: 10.1016/j.ijggc.2015.10.004 [28] Berntsen A, Todorovic J, Raphaug M, et al. Salt clogging during supercritical CO2 injection into a downscaled borehole model[J]. International Journal of Greenhouse Gas Control, 2019, 86: 201-210. doi: 10.1016/j.ijggc.2019.04.009 [29] Ott H, Kloe K, Bakel M, et al. Core-flood experiment for transport of reactive fluids in rocks[J]. The Review of Scientific instruments, 2012, 83: 84501. doi: 10.1063/1.4746997 [30] Roels S, Ott H, Zitha P. μ-CT analysis and numerical simulation of drying effects of CO2 injection into brine-saturated porous media[J]. International Journal of Greenhouse Gas Control, 2014, 27: 146-154. doi: 10.1016/j.ijggc.2014.05.010 [31] Pruess K, Oldenburg C M, Moridis G J. TOUGH2 User's Guide Version 2[R]. Berkeley: Office of Scientific & Technical Information Technical Reports, 1999. [32] Pan L, Spycher N, Doughty C, et al. ECO2N V2.0: A TOUGH2 fluid property module for modeling CO2-H2O-NACL systems to elevated temperatures of up to 300℃[J]. Greenhouse Gases: Science and Technology, 2017, 7(2): 313-327. doi: 10.1002/ghg.1617 [33] Pruess K, Spycher N. ECO2N-A fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers[J]. Energy Conversion and Management, 2007, 48(6): 1761-1767. doi: 10.1016/j.enconman.2007.01.016 [34] Verma A, Pruess K. Thermohydrologic conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations[J]. Journal of Geophysical Research, 1988, 93(B2): 1159-1173. doi: 10.1029/JB093iB02p01159 [35] Xu T, Apps J, Pruess K. Numerical simulation to study mineral trapping for CO2 disposal in deep aquifers[J]. Applied Geochemistry, 2004, 19(6): 917-936. doi: 10.1016/j.apgeochem.2003.11.003 [36] Yang G, Li Y, Atrens A, et al. Numerical investigation into the impact of CO2-water-rock interactions on CO2 injectivity at the Shenhua CCS Demonstration Project, China[J]. Geofluids, 2017, 2017: 1-17. http://www.onacademic.com/detail/journal_1000040469636610_a0c3.html [37] 刁玉杰. 神华CCS示范工程场地储层表征与CO2运移规律研究[D]. 北京: 中国矿业大学(北京), 2017.Diao Y J. Study on the researvoir characterization and CO2 migration underground in the Shenhua CCS Demonstration Project Site[D]. Beijing: China University of Mining & Technology(Beijing), 2017. [38] 李智, 叶加仁, 曹强, 等. 鄂尔多斯盆地杭锦旗独贵加汗区带下石盒子组储层特征及孔隙演化[J]. 地质科技通报, 2021, 40(4): 49-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104005.htmLi Z, Ye J R, Cao Q, et al. Reservoir characteristics and pore evolution of the Lower Shihezi Formation in Duguijiahan zone, Hangjinqi area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 49-60(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104005.htm [39] 赵会涛, 郭英海, 杜小伟, 等. 鄂尔多斯盆地高桥地区本溪组砂岩储层微观孔隙多重分形特征[J]. 地质科技通报, 2020, 39(6): 175-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202006019.htmZhao H T, Guo Y H, Du X W, et al. Micro-pore multifractal characteristics of Benxi Formation sandstone reservoir in Gaoqiao area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 175-184(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202006019.htm [40] VanGenuchten M. A Closed-form equation for predicting the hydraulic conductivity of unsaturated soils1[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x [41] Corey A T. The interrelation between gas and oil relative permeabilities[J]. Producers Monthly, 1954, 19(1): 38-41. http://www.researchgate.net/publication/240318036_The_Interrelation_Between_Gas_and_Oil_Relative_Permeability [42] Xie J, Zhang K, Hu L, et al. Field-based simulation of a demonstration site for carbon dioxide sequestration in low-permeability saline aquifers in the Ordos Basin, China[J]. Hydrogeology Journal, 2015, 23(7): 1465-1480. doi: 10.1007/s10040-015-1267-9 [43] Sokama-Neuyam Y A, Forsetløkken S L, Lien J E, et al. The coupled effect of fines mobilization and salt precipitation on CO2 injectivity[J]. Energies, 2017, 10(8): 1125. doi: 10.3390/en10081125 [44] Baumann G, Henninges J, Lucia M D. Monitoring of saturation changes and salt precipitation during CO2 injection using pulsed neutron-gamma logging at the Ketzin pilot site[J]. International Journal of Greenhouse Gas Control, 2014, 28: 134-146. doi: 10.1016/j.ijggc.2014.06.023