Slope failure criterion for the strength reduction material point method
-
摘要: 用物质点强度折减法求解边坡安全系数时, 需要选择一定的失稳判据, 而采用不同的失稳判据获得的安全系数通常存在一定差异。为此, 采用物质点强度折减法对两个边坡算例进行了稳定性分析, 对比研究了文献中常用的4种边坡失稳判据(计算不收敛、特征点位移突变、塑性应变贯通及界限值判据)在计算边坡安全系数时的合理性及适用性。同时, 将Spencer极限平衡法获得的安全系数作为参考, 进一步验证了结果的合理性与准确性。结果表明: ①数值计算的收敛性不能作为边坡失稳判据; ②将特征点位移突变视为边坡失稳判据时, 获得的安全系数与极限平衡法获得的结果基本一致, 故特征点位移突变可以作为边坡失稳判据; ③塑性应变贯通和边坡最大位移随迭代时间步趋于稳定的界限值不宜单独作为边坡失稳判据。Abstract: It is necessary to select an instability criterion for the material point strength reduction method (SRMPM) to solve the slope safety factor (Fs), and there are some differences in the obtained Fs values with different instability criteria. To examine the rationality and applicability of the four common instability criteria (i.e., calculation nonconvergence, displacement mutation of the feature point, transfixion of the plastic zone and the limit value), this paper uses the SRMPM to analyse the stability of two slope examples. The Fs obtained by the Spencer limit equilibrium method (LEM) is taken as a reference to further verify the rationality and accuracy of the results. The results show that ① the material point calculation is convergent, so the calculation nonconvergence cannot be used as the slope instability criterion; ② when the displacement mutation of the feature is regarded as the criterion of slope instability, the Fs is basically consistent with the LEM, so the displacement mutation of the feature point can be used as the slope instability criterion; and ③ the limit value and the transfixion of the plastic zone cannot be used alone as the slope instability criterion.
-
表 1 边坡基本计算参数
Table 1. Fundamental calculation parameters of slope
表 2 不同方法得到的安全系数
Table 2. Fs obtained by various methods
表 3 不同折减系数下算例1和2边坡位移
Table 3. Displacement of example 1 and 2 for different Ft
Ft yA,yC/m xA, xC/m xB, xD/m 算例1 0.95 0.013 0.001 0.003 0.96 0.014 0.002 0.003 0.97 0.015 0.002 0.004 0.98 0.016 0.003 0.004 0.99 0.019 0.005 0.005 1.00 0.026 0.010 0.008 1.01 1.313 0.923 0.426 1.02 1.384 0.977 0.169 1.03 1.484 1.051 0.500 算例2 1.10 0.018 0.000 0.002 1.20 0.019 0.000 0.003 1.30 0.020 0.002 0.004 1.40 0.020 0.003 0.005 1.50 0.024 0.006 0.007 1.60 0.028 0.012 0.016 1.70 0.054 0.041 0.060 注:表中yA和yC分别为算例1和算例2的坡顶点竖向位移,xA和xC分别为算例1和算例2的坡顶点横向位移,xB和xD分别为算例1和算例2的坡脚点横向位移 -
[1] 吴益平, 卢里尔, 薛阳. 基于临界状态的边坡渐进破坏力学模型分析及应用[J]. 地质科技通报, 2020, 39(5): 1-7. doi: 10.19509/j.cnki.dzkq.2020.0501Wu Y P, Lu L E, Xue Y. Application of landslide progressive failure mechanical model based on the critical stress state[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 1-7(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0501 [2] 陈祖煜. 土质边坡稳定分析[M]. 北京: 中国水利水电出版社, 2003.Chen Z Y. Soil slope stability analysis[M]. Beijing: Water Publication of China, 2003(in Chinese). [3] Zheng Y, Tang X, Zhao S, et al. Strength reduction and step-loading finite element approaches in geotechnical engineering[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2009, 1(1): 21-30. doi: 10.3724/SP.J.1235.2009.00021 [4] Klar A, Aharonov E, Kalderon-Asael B, et al. Analytical and observational relations between landslide volume and surface area[J]. Journal of Geophysical Research Earth Surface, 2011, 116: F02001. [5] Bai B, Yuan W, Li X C. A new double reduction method for slope stability analysis[J]. Journal of Central South University, 2014, 21(3): 1158-1164. doi: 10.1007/s11771-014-2049-6 [6] Isakov A, Moryachkov Y. Estimation of slope stability using two-parameter criterion of stability[J]. International Journal of Geomechanics, 2014, 14(3): 613-624. [7] Yang T, Zou J F, Pan Q J. Three-dimensional seismic stability of slopes reinforced by soil nails[J]. Computers and Geotechnics, 2020, 127: 103768. doi: 10.1016/j.compgeo.2020.103768 [8] 吴凯峰, 郑志勇, 余海兵. 基于应变软化特征的含软弱层公路边坡稳定性研究[J]. 地质科技情报, 2019, 38(6): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906018.htmWu K F, Zheng Z Y, Yu H B. Stability evaluation of highway slope with soft layer based on strain softening characteristics[J]. Geological Science and Technology Information, 2019, 38(6): 150-156(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906018.htm [9] 唐宇峰, 施富强, 廖学艳. 基于SPH的边坡稳定性计算中失稳判据研究[J]. 岩土工程学报, 2016, 38(5): 904-908. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605016.htmTang Y F, Shi F Q, Liao X Y. Failure criteria based on SPH slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5), 904-908(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605016.htm [10] 涂义亮, 刘新荣, 钟祖良, 等. 三类边坡失稳判据的统一性[J]. 岩土力学, 2018, 39(1): 180-187, 197. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801022.htmTu Y L, Liu X R, Zhong Z L, et al. The unity of three types of slope failure criteria[J]. Rock and Soil Mechanics, 2018, 39(1): 180-187, 197(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801022.htm [11] 裴国平, 陈培帅. 基于参数化训练模型的边坡强度折减法研究[J]. 山西建筑, 2012, 38(21): 101-103. doi: 10.3969/j.issn.1009-6825.2012.21.054Pei G P, Chen P S. Research on side slope strength reduction method based on parametric training model[J]. Shanxi Architecture, 2012, 38(21): 101-103(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6825.2012.21.054 [12] 郑颖人, 赵尚毅. 有限元强度折减法在土坡与岩坡中的应用[J]. 岩石力学与工程学报, 2004, 23(19): 3381-3388. doi: 10.3321/j.issn:1000-6915.2004.19.029Zheng Y R, Zhao S Y. Application of strength reduction FEM in soil and rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3381-3388(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2004.19.029 [13] Griffiths D V, Lane P A. Slope stability analysis by finite elements[J]. Geotechnique, 1999, 49(3): 387-403. doi: 10.1680/geot.1999.49.3.387 [14] Ugai K, Leshchinsky D O V. Three-dimension limit equilibrium and finite element analysis: A comparison of results[J]. Soils Found, 1995, 35(4): 1-7. doi: 10.3208/sandf.35.4_1 [15] 栾茂田, 武亚军, 年廷凯. 强度折减有限元法中边坡失稳的塑性区判据及其应用[J]. 防灾减灾工程学报, 2003, 23(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200303001.htmLuan M T, Wu Y J, Nian T K. A criterion for evaluating slope stability based on development of plastic zone by shear strength reduction FEM[J]. Journal of Disaster Prevention and Mitigation Engineering, 2003, 23(3): 1-8(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200303001.htm [16] 连镇营, 韩国城, 孔宪京. 强度折减有限元法研究开挖边坡的稳定性[J]. 岩土工程学报, 2001, 23(4): 407-411. doi: 10.3321/j.issn:1000-4548.2001.04.005Lian Z Y, Han G C, Kong X J. Stability analysis of excavation by strength reduction FEM[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 407-411(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2001.04.005 [17] 宋二祥. 土结构安全系数的有限元计算[J]. 岩土工程学报, 1997, 19(2): 4-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC702.000.htmSong E X. Finite element analysis of safety factor for soil structures[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(2): 4-10(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC702.000.htm [18] Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J]. Geotechnique, 1975, 25(4): 671-689. doi: 10.1680/geot.1975.25.4.671 [19] 刘金龙, 栾茂田, 赵少飞, 等. 关于强度折减有限元方法中边坡失稳判据的讨论[J]. 岩土力学, 2005, 26(8): 1345-1348. doi: 10.3969/j.issn.1000-7598.2005.08.035Liu J L, Luan M T, Zhao S F, et al. Discussion on criteria for evaluating stability of slope in elastoplastic FEM based on shear strength reduction technique[J]. Rock and Soil Mechanics, 2005, 26(8): 1345-1348(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2005.08.035 [20] 吴春秋. 非线性有限单元法在土体稳定分析中的理论及应用研究[D]. 武汉: 武汉大学, 2004.Wu C Q. Theory and application study on the non-linear FEM for soil stability analysis[D]. Wuhan: Wuhan University, 2004, (in Chinese with English abstract). [21] 张培文, 陈祖煜. 弹性模量和泊松比对边坡稳定安全系数的影响[J]. 岩土力学, 2006, 27(2): 299-303. doi: 10.3969/j.issn.1000-7598.2006.02.025Zhang P W, Chen Z Y. Influences of soil elastic modulus and Poisson's ratioon slope stability[J]. Rock and Mechanics, 2006, 27(2): 299-303(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2006.02.025 [22] 刘新荣, 涂义亮, 钟祖良, 等. 基于能量突变的强度折减法边坡失稳判据[J]. 中南大学学报: 自然科学版, 2016, 47(6): 2065-2072. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201606034.htmLiu X R, Tu Y L, Zhong Z L, et al. Slope's failure criterion based on energy catastrophe in shear strength reduction method[J]. Journal of Central South University : Science and Technology, 2016, 47(6): 2065-2072(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201606034.htm [23] 柴红保, 曹平, 林杭, 等. 采用边坡稳定性强度折减法分析弹性应变能突变判据[J]. 中南大学学报: 自然科学版, 2009, 40(4): 1054-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200904037.htmChai H B, Cao P, Lin H, et al. Criteria of elastic strain energy in slope stability analysis using strength reduction method[J]. Journal of Central South University: Science and Technology, 2009, 40(4): 1054-1058(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200904037.htm [24] 王双, 李小春, 石露, 等. 物质点强度折减法及其在边坡中的应用[J]. 岩土力学, 2016, 37(9): 2672-2678. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201609033.htmWang S, Li, X C, Shi L, et al. Material point strength reduction method and its application to slope engineering[J]. Rock and Soil Mechanics, 37(9), 2672-2678(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201609033.htm [25] 史卜涛, 张云, 张巍. 边坡稳定性分析的物质点强度折减法[J]. 岩土工程学报, 2016, 38(9): 1678-1684. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201609018.htmShi B T, Zhang Y, Zhang W. Strength reduction material point method for slope stability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1678-1684(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201609018.htm [26] 王安礼, 王双, 石露, 等. 物质点局部强度折减法及其在边坡中的应用[J]. 交通科学与工程, 2016, 32(4): 1-9. doi: 10.3969/j.issn.1674-599X.2016.04.001Wang A L, Wang S, Shi L, et al. Local strength reduction method for material points and its application in slope engineering[J]. Journal of Transport Science and Engineering, 2016, 32(4): 1-9(in Chinese with English abstract). doi: 10.3969/j.issn.1674-599X.2016.04.001 [27] 张雄, 廉艳萍, 刘岩, 等. 物质点法[M]. 北京: 清华大学出版社, 2013.Zhang X, Lian Y P, Liu Y, et al. Material point method[M]. Beijing: Tsinghau University Press, 2013(in Chinese with English abstract). [28] Sulsky D, Chen Z, Schreyer H L. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118(1): 179-196. [29] 张静静, 董龙雷. 考虑冲击温度影响的物质点法算法[J]. 计算机辅助工程, 2018, 27(5): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ2018Z1007.htmZhang J J, Dong L L. Material point method algorithm considering impact temperature influence[J]. Computer Aided Engineering, 2018, 27(5): 37-41(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ2018Z1007.htm [30] 张雄, 廉艳平, 杨鹏飞, 等. 冲击爆炸问题的三维物质点法数值仿真[J]. 计算机辅助工程, 2011, 20(4): 29-37. doi: 10.3969/j.issn.1006-0871.2011.04.007Zhang X, Lian Y P, Yang P F, et al. 3D simulation based on material point method for impact and explosion problems[J]. Computer Aided Engineering, 2011, 20(4): 29-37(in Chinese with English abstract). doi: 10.3969/j.issn.1006-0871.2011.04.007 [31] 刘康琦, 刘红岩, 祁小博. 基于强度折减法的土石混合体边坡长期稳定性研究[J]. 工程地质学报, 2020, 28(2): 327-334. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002013.htmLiu K Q, Liu H Y, Qi X B. Numerical study in long-term stability of soil-rock mixture slope using strength reduction technique[J]. Journal of Engineering Geology, 2020, 28(2): 327-334(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002013.htm [32] 赵尚毅, 郑颖人, 时卫民, 等. 用有限元强度折减法求边坡稳定安全系数[J]. 岩土工程学报, 2002, 24(3): 343-346. doi: 10.3321/j.issn:1000-4548.2002.03.017Zhao S Y, Zheng Y R, Shi W M, et al. Analysis on safety factor of sloep by strength reduction FEM[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(3): 343-346(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2002.03.017 [33] Zhao T, Sun J, Zhang B, et al. Analysis of slope stability with dynamic overloading from earthquake[J]. Journal of Earth Science, 2012, 23(3): 285-296. doi: 10.1007/s12583-012-0257-2 [34] 廉艳平, 张帆, 刘岩, 等. 物质点法的理论和应用[J]. 力学进展, 2013, 43(2): 237-264. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201302003.htmLian Y P, Zhang F, Liu Y, et al. Material point method and its applications[J]. Advances in Mechanics, 2013, 43(2): 237-264(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201302003.htm [35] 孙玉进, 宋二祥. 大位移滑坡形态的物质点法模拟[J]. 岩土工程学报, 2015, 37(7): 1218-1225. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507008.htmSun Y J, Sun E X. Simulation of large-displacement landslide by material point method[J]. Chiese Journal of Geotechnical Engineering, 2015, 37(7): 1218-1225(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507008.htm [36] Xu Z, Stark T D. Runout analyses using 2014 Oso landslide[J]. Canadian Geotechnical Journal, 2021, 59(1): 55-73. [37] Liu K, Wang Y, Huang M, et al. Postfailure analysis of slopes by random generalized interpolation material point method[J]. International Journal of Geomechanics, 2021, 21(3): 04021015. doi: 10.1061/(ASCE)GM.1943-5622.0001953 [38] 费康, 张建伟. ABAQUS在岩土工程中的应用[M]. 北京: 水利水电出版社, 2010.Fei K, Zhang J W. Applications of ABAQUS in soil engineering[M]. Beijing: Water Publication of China, 2010(in Chinese). [39] Smith I M, Griffiths D V, Margetts L. Programming the finite element method[M]. London: John Wiley & Sons, 2014. [40] Lax P D, Wendroff B. The Courant-Friedrichs-Lewy(CFL) condition[J]. Communications on Pure and Applied Mathematics, 1962, 15(4): 363-371. doi: 10.1002/cpa.3160150401 [41] Strikwerda J. Finite difference schemes and partial difference equations[J]. Mathematics of Computation, 1990, 55: 869-870. doi: 10.2307/2008454 [42] 裴立建, 屈本宁, 钱闪光. 有限元强度折减法边坡失稳判据的统一性[J]. 岩土力学, 2010, 31(10): 3337-3341. doi: 10.3969/j.issn.1000-7598.2010.10.049Pei L J, Qu B N, Qian S G. Uniformity of slope instability criteria of strength reduction with FEM[J]. Rock and Mechanics, 2010, 31(10): 3337-3341(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2010.10.049 [43] 赵尚毅, 郑颖人, 张玉芳. 极限分析有限元法讲座: 有限元强度折减法中边坡失稳的判据探讨[J]. 岩土力学, 2005, 26(2): 332-336. doi: 10.3969/j.issn.1000-7598.2005.02.035Zhao S Y, Zheng Y R, Zhang Y F. Study on slope failure criterion in strength reduction finite element method[J]. Rock and Mechanics, 2005, 26(2): 332-336(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2005.02.035