留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西宁盆地地下热水的TDS分布特征及富集机理

孙红丽 王贵玲 蔺文静

孙红丽, 王贵玲, 蔺文静. 西宁盆地地下热水的TDS分布特征及富集机理[J]. 地质科技通报, 2022, 41(1): 278-287, 299. doi: 10.19509/j.cnki.dzkq.2021.0079
引用本文: 孙红丽, 王贵玲, 蔺文静. 西宁盆地地下热水的TDS分布特征及富集机理[J]. 地质科技通报, 2022, 41(1): 278-287, 299. doi: 10.19509/j.cnki.dzkq.2021.0079
Sun Hongli, Wang Guiling, Lin Wenjing. Distribution characteristics and enrichment mechanism of TDS geothermal water in Xining Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 278-287, 299. doi: 10.19509/j.cnki.dzkq.2021.0079
Citation: Sun Hongli, Wang Guiling, Lin Wenjing. Distribution characteristics and enrichment mechanism of TDS geothermal water in Xining Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 278-287, 299. doi: 10.19509/j.cnki.dzkq.2021.0079

西宁盆地地下热水的TDS分布特征及富集机理

doi: 10.19509/j.cnki.dzkq.2021.0079
基金项目: 

国家重点研发项目 2019YFB1504101

国家自然科学基金项目 41602271

中国地质调查项目 1212011220842

详细信息
    作者简介:

    孙红丽(1984-), 女, 助理研究员, 主要从事地热流体地球化学研究工作。E-mail: hlsun2008@126.com

    通讯作者:

    王贵玲(1964-), 男, 研究员, 博士生导师, 主要从事地热资源评价研究。E-mail: Guilingw@163.com

  • 中图分类号: P641

Distribution characteristics and enrichment mechanism of TDS geothermal water in Xining Basin

  • 摘要: 西宁盆地大部分地下热水中TDS含量较高,极大限制了地热水的可利用性,研究盆地地下水TDS的成因机理,可为后期指导地热资源开发利用提供参考价值。通过对西宁盆地药水滩至盆地中心沿线地下水的常、微量组分的分析,探讨了区内TDS的分布特征及富集机理。结果表明:从盆地边缘到盆地中心,地下水由HCO3-Ca·Mg型淡水逐渐向SO4·Cl-Na、SO4-Na型盐、卤水变化,地下水具有陆相沉积水特征,且变质程度逐渐增强;盆地内不同区域TDS的富集机理也有显著差异,盆地边缘以降水入渗、溶解混合作用为主,湟水中心区域以蒸发浓缩作用和混合、水-岩相互作用为主,而盆地中心区域则以深部沉积物质随热液上涌的混合作用和封闭环境下的水-岩相互作用为主。

     

  • 图 1  西宁盆地地质构造略图及采样点位与断裂位置示意图

    Figure 1.  Sketch of geological structure and sampling points and fault location in Xining Basin

    图 2  采样点位与TDS、水化学类型分布示意图

    研究区范围示意区:A.药水滩;B.湟中:C.西宁中心

    Figure 2.  Sketch of sampling points and the distribution of TDS and hydrochemical types

    图 3  采样井点井口温度(a)、TDS(b)随井点深度变化图

    Figure 3.  Variation of wellhead temperature (a) and TDS (b) with well depth

    图 4  西宁盆地地下水采样区ρ(TDS)箱式图

    Figure 4.  Box chart of TDS content of groundwater sampling areas in Xining Basin

    图 5  西宁盆地地下水主要离子Piper三线图

    Figure 5.  Piper diagram of main ions of the groundwater in Xining Basin

    图 6  代表性离子比例系数与ρ(TDS)散点图

    Figure 6.  Scatter plot of representative ions′ proportional coefficient and TDS

    图 7  研究区内地下水ρ(TDS)吉布斯分布图

    Figure 7.  Gibbs distribution of TDS of the groundwater in the study area

    表  1  西宁盆地地下水主要化学指标测试结果

    Table  1.   Detection results of main chemicalindexes of groundwater in Xining Basin

    类型 采样编号 pH T/℃ TDS K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3- CO32- Sr 类型
    ρB/(mg·L-1)
    药水滩热水 Yh01 7.12 35 993.5 3.81 47.9 196.7 88.1 6.3 129.5 995.9 0 0.52 HCO3-Ca·Mg
    Yh02 7.03 38 1 221 3.75 47.4 285.7 88.4 9.1 153.0 1 221 0 0.544 HCO3-Ca·Mg
    Yh03-S 7.05 22 1 510 2.36 43.1 394.7 97.1 7.35 176.9 1 544 0 0.362 HCO3-Ca·Mg
    Yh04* 6.91 41.5 1 550 2.50 97.5 225.4 83.2 12.76 153.7 1 156.9 0 - HCO3-Ca·Mg
    药水滩冷水 Yc01-S 7.81 10 589.4 0.76 77.9 49.4 49.5 3.50 228.0 344.7 0 0.199 HCO3·SO4-Mg·Na·Ca
    Yc02-S 7.74 7 574.1 1.13 89.0 83.0 20.0 5.25 206.5 312.3 0 0.204 HCO3·SO4-Ca·Na
    Yc03-S 8.02 9 572.9 1.04 70.0 78.5 32.1 5.25 209.8 330.0 0 0.225 HCO3·SO4-Ca·Na·Mg
    湟中热水 Hh01 8.58 21 1 944 2.07 500.7 70.3 42.9 43.77 1 079 335.9 11.6 4.236 SO4-Na
    Hh02* 7.56 65 34 200 124 11 100 270.1 78.3 6 983 14 200 1 414 0 6.1 SO4·Cl-Na
    湟中地下冷水 Hc01-S 7.53 10 2 492 4.63 539.8 152.2 117.3 385.2 1 021 429.0 0 5.598 SO4·Cl-Na·Mg
    Hc02 7.80 9 1 226 2.96 288 70.6 38.7 19.96 614 335.9 0 0.272 HCO3·SO4-Na
    Hc03 7.50 9 3 903 2.42 625.7 355.8 192.2 118 2 402 347.7 0 19.04 SO4-Na·Ca·Mg
    Hc04 7.99 13 2 379 5.98 615.6 76.6 66.8 362.4 1 033 368.3 0 7.297 SO4·Cl-Na
    Hc05-S 8.43 7 1 139 0.97 276.6 67.6 29.2 8.75 602 277.0 5.8 0.369 SO4·HCO3-Na
    Hc06-S 8.75 10 2 587 2.74 681.8 74.3 68.4 259.1 1 309 277.6 15.6 2.225 SO4-Na
    Hc07-S 8.79 12 2 036 2.28 596.4 38.7 53.6 96.99 866 582.2 29 1.533 SO4·HCO3-Na
    Hc08-S 8.46 13 1 864 2.50 544.7 39.5 43.6 81.23 889 466.7 10.4 1.112 SO4·HCO3-Na
    Hc09-S 7.52 12.3 2 377 4.89 709.7 47.1 46.7 243.3 1038 471.4 0 1.281 SO4·HCO3-Na
    西宁热水 Xh01-S 7.70 36 27 696 37.1 9 352 242.6 116.9 5 865 11 321 1 427 0 10.06 SO4·Cl-Na
    Xh02 7.44 34 42 604 42.9 14 460 548.4 139.8 11 729 15 370 524.5 0 10.84 Cl·SO4-Na
    Xh03* 7.15 27 21 600 0 6 980 262.8 77.8 5 104.2 8 489 1 292.2 0 - SO4·Cl-Na
    Xh04* 7.47 30 20 400 29 6 330 380.8 36.45 3 261.4 9 414 1 354.6 0 - SO4·Cl-Na
    Xh05* 7.37 42 28 490 18 9 359 476.7 108 5 955.6 12 007 1 181.4 0 8.46 SO4·Cl-Na
    Xh06* 8.08 42.2 39 820 57.6 11 760 501.1 167.8 4 938.9 19 987 458.9 0 - SO4·Cl-Na
    Xh07* 7.35 39.5 34 900 50 8 300 271.4 171 5 232 14 109 1 576 0 - SO4·Cl-Na
    Xh08* 7.82 53 52 970 34 17 250 573.1 103.3 8 915.7 25 792 598 0 - SO4·Cl-Na
    西宁冷水 Xc01-S* 7.56 15.2 32 200 73 10 600 293.1 71.9 6 860 12 900 1 340 0 - SO4·Cl-Na
    Xc02-S* 7.52 12.7 12 300 15 3 902 280.6 63.9 899.7 5 773 2720.3 0 - SO4·HCO3-Na
    周边热水 Zh01* 8 34 11 992 17.5 3 735 141.2 32 1 293.3 6 258 508 0 - SO4·Cl-Na
    Zh02* 7.65 62 41 820 37.3 14 330 567.7 107 15 992.6 10 276 249.8 0 10.92 Cl·SO4-Na
    Zh03-S* 6.54 21 5 470 0 756.5 739.5 145.4 294.2 1 359 3 145 0 - HCO3·SO4-Ca·Na
    周边冷水 Zc01* 6.63 17 2 940 68.8 189 300.5 145.5 58.2 320 1820 0 - HCO3-Ca·Mg·Na
    Zc02* 7.4 8 7 590 11.4 2312 120.5 18.4 745.5 4114 265.4 0 - SO4-Na
    带“*”为收集样(来源于《西宁盆地地热地质》[17]),样品编号中“h”、“c”分别为井口温度≥20℃、 < 20℃地下水样品,“-”数据遗失或未测,“S”为泉水
    下载: 导出CSV

    表  2  研究区地下水样品的物理参数、常量和微量元素质量浓度统计

    Table  2.   Summary of physical parameters, major and trace elements concentration of the groundwater samples in the study area

    项目 最小值 中位值 平均值 最大值 标准方差
    pH 6.54 7.53 7.62 8.79 0.57
    T/(℃) 7 21 24.77 65 16.54
    TDS 993.5 4 686.5 14 807.1 52 970 16 311.6
    K+ 0.0 5.98 22.7 124 29.28
    Na+ 43.1 733.1 4 544.4 17 250 5 373.32
    Ca2+ 38.73 266.45 268.84 739.5 188.01
    Mg2+ 18.40 80.77 88.02 192.2 46.06
    Li+ ρB/(mg·L-1) 0.01 0.05 0.53 3.41 0.97
    Sr 0.27 3.23 5.0 19.04 5.23
    Cl- 6.30 373.8 2 859.4 15 992.6 4 090.55
    SO42- 129.5 1 880.6 6 105.3 25 792.1 6933.41
    HCO3- 249.8 590.1 956.2 3 145 729.44
    F- 0.00 1.36 1.94 7.5 2.37
    Br- 0.00 0.20 1.84 8.20 2.81
    下载: 导出CSV

    表  3  研究区采样点TDS、主要离子及微量组分相关分析结果

    Table  3.   Correlation analysis results of the sampling points′ TDS, main ions and tracecomponents in the study area

    项目 TDS K Na Ca Mg Cl SO4 HCO3 CO3 Sr SiO2 F Li B T
    K 0.667**
    Na 0.993** 0.647**
    Ca 0.648** 0.464** 0.632**
    Mg 0.423* 0.380* 0.365 0.670**
    Cl 0.912** 0.567** 0.933** 0.612** 0.347
    SO4 0.970** 0.642** 0.955** 0.596** 0.392* 0.791**
    HCO3 0.100 0.376* 0.061 0.490** 0.332 -0.007 0.087
    CO3 -0.264 -0.243 -0.250 -0.386** -0.248* -0.231 -0.249 -0.238
    Sr 0.589** 0.338 0.575* 0.629** 0.840** 0.550** 0.598** 0.018 -0.227
    SiO2 0.653** 0.622** 0.630** 0.611** 0.484* 0.568** 0.634** 0.296 -0.292 0.289
    F 0.590* 0.260 0.627** 0.600** 0.460* 0.715** 0.504* 0.467* -0.109 0.601* 0.404
    Li 0.955** 0.677** 0.960** 0.671** 0.456* 0.983** 0.929 0.334 -0.212 0.505* 0.468* 0.828**
    B 0.957** 0.970** 0.959** 0.505 0.395 0.926** 0.968** 0.217 -0.161 0.477 0.293 0.981** 0.930**
    T 0.729** 0.572** 0.721** 0.587** 0.371 0.710** 0.671** 0.182 -0.268 0.343* 0.918** 0.418 0.615** 0.511
    深度 0.692** 0.339 0.717** 0.278 0.107 0.803** 0.533* -0.506 - 0.468 0.807 0.513 1.0** 0.848**
    注:** 指在0.01水平(双侧)上显著相关;* 在0.05水平(双侧)上显著相关
    下载: 导出CSV
  • [1] 王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm

    Wang G L, Liu Y G, Zhu X, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm
    [2] Yw A, Yl A, Jd B, et al. Geothermal energy in China: Status, challenges, and policy recommendations[J]. Utilities Policy, 2020, 3(19): 64. http://www.sciencedirect.com/science/article/pii/S0957178720300151
    [3] 马峰, 蔺文静, 郎旭娟, 等. 我国干热岩资源潜力区深部热结构[J]. 地质科技情报, 2015, 34(6): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506025.htm

    Ma F, Lin W J, Lang X J, et al. Deep geothermal structures of potential hot dry rock resources area in China[J]. Geological Science and Technology Information. 2015, 34(6): 176-181(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506025.htm
    [4] Alimonti C, Soldo E, Scrocca D. Looking forward to a decarbonized era: Geothermal potential assessment for oil & gas fields in Italy[J]. Geothermics, 2021, 93(24): 102070. http://www.sciencedirect.com/science/article/pii/S0375650521000304
    [5] Zhang R, Wang G, Shen X, et al. Is geothermal heating environmentally superior than coal fired heating in China?[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110014. doi: 10.1016/j.rser.2020.110014
    [6] 刘德民, 张昌生, 孙明行, 等. 干热岩勘查评价指标与形成条件[J]. 地质科技通报, 2021, 40(3): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103001.htm

    Liu D M, Zhang C S, Sun M X, et al. Evaluation indexes and formation conditions of hot dry rock exploration[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 1-11(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103001.htm
    [7] 王思琪, 张保建, 李燕燕, 等. 雄安新区高阳地热田东北部深部古潜山聚热机制[J]. 地质科技通报, 2021, 40(3): 12-21.

    Wang S Q, Zhang B J, Li Y Y, et al. Heat accumulation mechanism of deep ancient buried hill in the northeast of Gaoyang geothermal field, Xiong'an New Area[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 12-21(in Chinese with English abstract).
    [8] 赵振, 罗银飞, 孟梦, 等. 青海省地热资源概况及勘查开发利用部署初步研究[J]. 青海环境, 2013, 23(3): 130-135. doi: 10.3969/j.issn.1007-2454.2013.03.006

    Zhao Z, Luo Y F, Meng M, et al. A preliminary study on the general situation of geothermal resources and the deployment of exploration, development and utilization in Qinghai Province[J]. Qinghai Environment, 2013, 23(3): 130-135(in Chinese with English abstract). doi: 10.3969/j.issn.1007-2454.2013.03.006
    [9] 郎旭娟, 刘峰, 刘志明, 等. 青海省贵德盆地大地热流研究[J]. 地质科技情报, 2016, 35(3): 227-232. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201603031.htm

    Lang X J, Liu F, Liu Z M, et al. Terrestrial heat flow in Guide Basin, Qinghai[J]. Geological Science and Technology Information, 2016, 35(3): 227-232(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201603031.htm
    [10] 王斌, 何世豪, 李百祥. 从地球物理场信息分析西宁盆地地热地质条件[J]. 西北地震学报, 2011, 33(2): 149-154. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201102009.htm

    Wang B, He S H, Li B X. Analysis on geothermal geological condition of Xining Basin on the basis of characteristic of geophysical field[J]. Northwestern Seismological Journal, 2011, 33(2): 149-154(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201102009.htm
    [11] 孙恺. 西宁盆地地下热水循环机制与资源评价[D]. 西安: 西北大学, 2015.

    Sun K. Geothermal water circulation mechanism and resource evaluation in Xining Basin[D]. Xi'an: Northwestern University, 2015 (in Chinese with English abstract).
    [12] 张森琦, 李长辉, 孙王勇, 等. 西宁盆地热储构造概念模型的建立[J]. 地质通报, 2008, 27(1): 126-136. doi: 10.3969/j.issn.1671-2552.2008.01.012

    Zhang S Q, Li C H, Sun W Y, et al. Construction of the conceptual model of thermal r eservoir structure of the Xining Basin, China[J]. Geological Bulletin of China, 2008, 27(1): 126-136(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2008.01.012
    [13] 赵振, 于漂罗, 陈惠娟, 等. 青海省西宁地热田成因分析及资源评价[J]. 中国地质, 2015, 42(3): 803-810. doi: 10.3969/j.issn.1000-3657.2015.03.029

    Zhao Z, Yu P L, Chen H J, et al. Genetic analysis and resource evaluation of the Xining geothermal field in Qinghai Province[J]. Geology in China, 2015, 42(3): 803-810(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2015.03.029
    [14] 李惠娣, 张森琦, 白嘉启, 等. 西宁药水滩地热田水化学特征及热水起源初探[J]. 地质学报, 2007, 81(9): 141-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200709014.htm

    Li H D, Zhang S Q, Bai J Q, et al. Hydrochemistry and origin of the Yaoshuitan geothermal field, Xining, Qinghai[J]. Acta Geologica Science, 2007, 81(9): 141-146(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200709014.htm
    [15] 徐博, 尚小刚, 李华, 等. 青海省湟中县药水滩地热田地质特征与经济社会意义[J]. 青海国土经略, 2019, 95(3): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-GTJL201903035.htm

    Xu B, Shang X G, Li H, et al. Geological characteristics and economic and social significance of hot field in Yaoshuitan, Huangzhong County, Qinghai Province[J]. Land Strategy of Qinghai, 2019, 95(3): 74-77(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GTJL201903035.htm
    [16] Tan H, Zhang W, Chen J, et al. Isotope and geochemical study for geothermal assessment of the Xining Basin of the northeastern Tibetan Plateau[J]. Geothermics, 2012, 42(4): 47-55. http://www.onacademic.com/detail/journal_1000035051154310_118f.html
    [17] 李成英, 韩积斌, 黄鑫, 等. 西宁市海湖新区地下热水形成的机理[J]. 盐湖研究, 2017, 25(2): 13-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201702003.htm

    Li C Y, Han J B, Huang X, et al. Formation mechanism of geothermal water in New Haihu District, Xining City[J]. Journal og Saltlake Research, 2017, 25(2): 13-20(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201702003.htm
    [18] 尚小刚. 青海省威远镇地热田热储特征及其开发利用潜力评价[D]. 北京: 中国地质大学(北京), 2013.

    Shang X G. Heat storage characteristics and development and utilization potential evaluation of geothermal field in Weiyuan Town, Qinghai Province[D]. Beijing: China University of Geosciences(Beijing), 2013(in Chinese with English abstract).
    [19] 张森琦. 西宁盆地地热地质[M]. 北京: 地质出版社, 2013.

    Zhang S Q. Geothermal geology of Xining Basin[M]. Beijing: Geological Publishing House, 2013(in Chinese).
    [20] Sun Z, Rui M, Wang Y, et al. Hydrogeological and hydrogeochemical control of groundwater salinity in an arid inland basin: Dunhuang Basin, northwestern China[J]. Hydrological Processes, 2016, 30(12): 1884-1902. doi: 10.1002/hyp.10760
    [21] Singh P, Mukherjee S. Chemical signature detection of groundwater and geothermal waters for evidence of crustal deformation along fault zones[J]. Journal of Hydrology, 2019, 582(4): 124459. http://www.sciencedirect.com/science/article/pii/S0022169419311941
    [22] Bloomfield J P, Lewis M A, Newell A J, et al. Characterising variations in the salinity of deep groundwater systems: A case study from Great Britain(GB)[J]. Journal of Hydrology: Regional Studies, 2020, 28: 100684. doi: 10.1016/j.ejrh.2020.100684
    [23] Sun Z, Rui M, Wang Y, et al. Hydrogeological and hydrogeochemical control of groundwater salinity in an arid inland basin: Dunhuang Basin, northwestern China[J]. Hydrological ProcHydrological Processesrnesses, 2016, 30(12): 1884-1902. doi: 10.1002/hyp.10760
    [24] Xu X Y, Xiong G Y, Chen G Q, et al. Characteristics of coastal aquifer contamination by seawater intrusion and anthropogenic activities in the coastal areas of the Bohai Sea, eastern China[J]. Journal of Asian Earth Sciences, 2021, 5(18): 104830. http://www.sciencedirect.com/science/article/pii/S1367912021001681
    [25] 李成城. 运城盆地高氟地下咸水成因机制研究[D]. 武汉: 中国地质大学(武汉), 2018.

    Li Y C. Genesis of high fluoride saline groundwater in Yuncheng Basin, Northern China[D]. Wuhan: China University of Geosciences(Wuhan), 2018(in Chinese with English abstract).
    [26] 刘宏伟, 陈社明, 郭旭, 等. 潍北平原海(咸)水入侵现状评价[J]. 地质科技情报, 2017, 36(1): 213-218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201701027.htm

    Liu H W, Chen S M, Guo X, et al. Evaluation of present sea/saltwater intrusion into Weibei Plain[J]. Geological Science and Technology Information, 2017, 36(1): 213-218(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201701027.htm
    [27] 蔡义汉. 地热直接利用[M]. 天津: 天津大学出版社, 2004.

    Cai Y H. Geothermal direct use[M]. Tianjing: Tianjin University Press, 2004(in Chinese).
    [28] Mao X, Zhu D, Ndikubwimana I, et al. The mechanism of high-salinity thermal groundwater in Xinzhou geothermal field, South China: Insight from water chemistry and stable isotopes[J]. Journal of Hydrology, 2021, 593(2): 125889. http://www.sciencedirect.com/science/article/pii/S0022169420313500
    [29] 石维栋, 张森琦, 周金元, 等. 西宁盆地北西缘地下热水分布特征[J]. 中国地质, 2006, 33(5): 1131-1136. doi: 10.3969/j.issn.1000-3657.2006.05.024

    Shi W D, Zhang S Q, Zhou J Y, et al. Distribution characteristics of geothermal water on the northwestern margin of Xining basin[J]. Geology in China, 2006, 33(5): 1131-1136(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2006.05.024
    [30] 汤洪康, 秦成明. 青海省西宁市地下热水资源调查评价报告[R]. 西宁: 青海省水文地质工程地质勘察院, 2003.

    Tang H K, Qin C M. Investigation and evaluation report on geothermal water resources in Xining City, Qinghai Province[R]. Xining: Qinghai Hydrogeological Engineering Geological Survey Institute, 2013(in Chinese).
    [31] 孙红丽, 马峰, 蔺文静, 等. 西藏高温地热田地球化学特征及地热温标应用[J]. 地质科技情报, 2015, 34(3): 171-177. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503024.htm

    Sun H L, Ma F, Lin W J, et al. Geochemical Characteristics and Geothermometer Application in High Temperature Geothermal Field in Tibet[J]. Geological Science and Technology Information. 2015, 34(3): 171-177(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503024.htm
    [32] Arnórsson S, Andrésdóttir A. Processes controlling the distribution of boron and chlorine in natural waters in Iceland. Geochimica et Cosmochimica Acta, 1995, 59(20), 4125-4146. doi: 10.1016/0016-7037(95)00278-8
    [33] 沈照理. 水文地球化学基础[M]. 北京: 地质出版社, 1993.

    Shen Z L. Fundamentals of hydrogeochemistry[M]. Beijing: Geological Publishing House, 1993(in Chinese).
    [34] 高春亮, 余俊清, 展大鹏, 等. 柴达木盆地盐湖硼矿资源的形成和分布特征[J]. 盐湖研究, 2009, 17(4): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ200904004.htm

    Gao C L, Yu J Q, Zhan D P, et al. Formation and Distribution Characteristics of Boron Resource in Salt Lakes of Qaidam Basin[J]. Salt Lake Research, 2009, 17(4): 6-13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ200904004.htm
    [35] Shand P, Darbyshire D P F, Love A J, et al. Sr isotopes in natural waters: Applications to source characterisation and water-rock interaction in contrasting landscapes[J]. Applied Geochemistry, 2009, 24(4): 574-586. doi: 10.1016/j.apgeochem.2008.12.011
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  702
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-20
  • 网络出版日期:  2022-03-02

目录

    /

    返回文章
    返回