留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫对地球表层生态系统中镉迁移转化影响的研究进展:以土壤-植物系统为例

张敏 胡学玉 胡晓晓 王子劲 曹坤坤

张敏, 胡学玉, 胡晓晓, 王子劲, 曹坤坤. 硫对地球表层生态系统中镉迁移转化影响的研究进展:以土壤-植物系统为例[J]. 地质科技通报, 2022, 41(3): 236-245. doi: 10.19509/j.cnki.dzkq.2021.0089
引用本文: 张敏, 胡学玉, 胡晓晓, 王子劲, 曹坤坤. 硫对地球表层生态系统中镉迁移转化影响的研究进展:以土壤-植物系统为例[J]. 地质科技通报, 2022, 41(3): 236-245. doi: 10.19509/j.cnki.dzkq.2021.0089
Zhang Min, Hu Xueyu, Hu Xiaoxiao, Wang Zijin, Cao Kunkun. Research progress on the effects of sulfur on the migration and transformation of cadmium in the earth surface ecosystem: A case study of soil-plant system[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 236-245. doi: 10.19509/j.cnki.dzkq.2021.0089
Citation: Zhang Min, Hu Xueyu, Hu Xiaoxiao, Wang Zijin, Cao Kunkun. Research progress on the effects of sulfur on the migration and transformation of cadmium in the earth surface ecosystem: A case study of soil-plant system[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 236-245. doi: 10.19509/j.cnki.dzkq.2021.0089

硫对地球表层生态系统中镉迁移转化影响的研究进展:以土壤-植物系统为例

doi: 10.19509/j.cnki.dzkq.2021.0089
基金项目: 

湖北省技术创新专项重大项目 2019ABA118

中央高校基本科研业务费专项 CUG170103

详细信息
    作者简介:

    张敏(1998—),女,现正攻读环境科学与工程专业硕士学位,主要从事土壤污染修复研究工作。E-mail:15617192832@163.com

    通讯作者:

    胡学玉(1963—),女,教授,主要从事土壤环境化学相关教学与科研工作。E-mail:huxueyu@cug.edu.cn

  • 中图分类号: X171

Research progress on the effects of sulfur on the migration and transformation of cadmium in the earth surface ecosystem: A case study of soil-plant system

  • 摘要:

    硫作为植物体内蛋白质、多种酶和其他生理活性物质的重要组成成分,具有不可替代性,是作物生长必需营养元素。由于硫元素的化学特征及其特殊的生理功能,使得硫在地表生态系统的迁移转化过程中与重金属元素镉的生态环境效应产生一定的耦合作用,并直接或间接影响镉在土壤-植物系统中的迁移和累积。在一定土壤环境条件下,硫通过价态变化直接与重金属元素镉发生作用,影响镉的生物有效性; 另外,硫可通过影响植物根表铁锰胶膜的形成改变镉在土壤中的迁移性; 其次,借助植物体内有机硫化合物的合成间接影响镉在植物体内不同部位的迁移与积累。目前硫对土壤-植物系统中镉迁移积累影响的研究结果不尽一致,两种元素的相互作用存在多向性和复杂性,这可能与土壤环境条件、植物根际微域差异等因素有关,且相关综述性的工作较少。因此,本研究综合国内外相关研究,介绍了硫与镉在土壤-植物系统中的交互作用,并分析了硫影响下镉在土壤-植物系统中迁移累积的相关机制及成因,为硫素及其化合物应用于重金属镉污染农用地土壤的治理及其安全利用提供参考。

     

  • 图 1  硫调节植物镉积累及其耐受作用过程的关键信号传导和代谢途径

    LMW Cd-PCs.低分子量的Cd-PCs螯合物; HMW Cd-PCs-S.高分子量的Cd-PCs-S螯合物; SOD.超氧化物歧化酶; APX.抗坏血酸过氧化物酶; MDHA.单脱氢抗坏血酸; MDHAR.单脱氢抗坏血酸还原酶; DHA.脱氢抗坏血酸; DHAR.脱氢抗坏血酸还原酶; GR.谷胱甘肽还原酶; GSSG.氧化型谷胱甘肽
    a.GSH合成及PCs螯合Cd2+过程; b.AsA-GSH循环

    Figure 1.  Partial metabolic and signal transduction pathways of sulfur in regulating cadmium accumulation and tolerance

  • [1] 刘文辉, 马腾, 李俊琦, 等. 资江河口区农田土壤重金属污染评价及来源分析[J]. 地质科技通报, 2021, 40(2): 138-146. doi: 10.19509/j.cnki.dzkq.2021.0212

    Liu W H, Ma T, Li J Q, et al. Pollution assessment and source analysis of heavy metals in agricultural soil around Zijiang River estuary[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 138-146(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0212
    [2] 吴冲龙, 刘刚, 王力哲, 等. 基于大数据的城市地质环境智能监管思路与方法[J]. 地质科技通报, 2020, 39(1): 157-163. doi: 10.19509/j.cnki.dzkq.2020.0117

    Wu C L, Liu G, Wang L Z, et al. Thinking and methods of intelligent supervision of urban geological environment based on big data[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 157-163 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0117
    [3] 龚杰, 孙紫童, 冯璐, 等. 武汉市东西湖区主要湖泊表层沉积物重金属污染特征与生态风险评价[J]. 地质科技通报, 2021, 40(3): 204-210. doi: 10.19509/j.cnki.dzkq.2021.0313

    Gong J, Sun Z T, Feng L, et al. Pollution characteristics and ecological risk assessment of heavy metals in surface sediments of main lakes in Dongxihu district, Wuhan[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 204-210(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0313
    [4] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[EB/OL]. (2014-04-17)[2021-02-04]. http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm.

    Ministry of Environmental Protection, Ministry of Land and Resources. Bulletin of national soil pollution survey[EB/OL]. (2014-04-17)[2021-02-04]. http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm.
    [5] 王丽, 和淑娟. 镉污染农用地安全利用技术研究与运用[J]. 环境与可持续发展, 2019, 44(5): 134-137. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKD201905034.htm

    Wang L, He S J. Advances and application of safety agroutilization of cadmium contaminated farmland soil[J]. Environment and Sustainable Development, 2019, 44(5): 134-137(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJKD201905034.htm
    [6] 孙丽娟, 段德超, 彭程, 等. 硫对土壤重金属形态转化及植物有效性的影响研究进展[J]. 应用生态学报, 2014, 25(7): 2141-2148. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201407041.htm

    Sun L J, Duan D C, Peng C, et al. Influence of sulfur on the speciation transformation and phytoavailability of heavy metals in soil: A review[J]. Chinese Journal of Applied Ecology, 2014, 25(7): 2141-2148(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201407041.htm
    [7] Li X Z, Yu H, Sun X W, et al. Effects of sulfur application on cadmium bioaccumulation in tobacco and its possible mechanisms of rhizospheric microorganisms[J]. Journal of Hazardous Materials, 2019, 368: 308-315. doi: 10.1016/j.jhazmat.2018.12.099
    [8] Bashir H, Ibrahim M M, Bagheri R, et al. Influence of sulfur and cadmium on antioxidants, phytochelatins and growth in Indian mustard[J]. Aob Plants, 2015, 7, doi: 10.1093/aobpla/plv001.
    [9] Lei P, Tang C, Wang Y J, et al. Understanding the effects of sulfur input on mercury methylation in rice paddy soils[J]. Science of the Total Environment, 2021. doi:10.1016/j.scitotenv, 2021, 146325.
    [10] 谢运河, 纪雄辉, 田发祥, 等. 不同类型土壤镉含量对香芋镉吸收的影响[J]. 生态环境学报, 2020, 29(3): 629-633. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ202003024.htm

    Xie Y H, Ji X H, Tian F X, et al. Effects of cadmium content in different soil types on cadmium absorption in taro[J]. Ecology and Environmental Sciences, 2020, 29(3): 629-633(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ202003024.htm
    [11] Yang J X, Liu Z Y, Wan X M, et al. Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant[J]. Ecotoxicology and Environmental Safety, 2016, 128: 206-212. doi: 10.1016/j.ecoenv.2016.02.021
    [12] Renata M G, Barbara H N. Sulfur nutrition level modifies the growth, micronutrient status, and cadmium distribution in cadmium-exposed spring wheat[J]. Physiology and Molecular Biology of Plants, 2019, 25(2): 421-432. doi: 10.1007/s12298-018-00635-3
    [13] Lu Y, Wang Q F, Li J, et al. Effects of exogenous sulfur on alleviating cadmium stress in tartary buckwheat[J]. Scientific Reports, 2019, 9, doi: 10.1038/s41598-019-43901-4.
    [14] Shi G L, Lu H Y, Liu H, et al. Sulfate application decreases translocation of arsenic and cadmium within wheat(Triticum aestivum L.) plant[J]. Science of the Total Environment, 2020, 713, doi: 10.1016/j.scitotenv.2020.136665.
    [15] Li H L, Pu P, Li X R, et al. Sulfur application reduces cadmium uptake in edible parts of pakchoi(Brassica chinensis L.) by cadmium chelation and vacuolar sequestration[J]. Ecotoxicology and Environmental Safety, 2020, 194, doi: 10.1016/j.ecoenv.2020.110402.
    [16] 邹茸, 王秀斌, 迟克宇, 等. 不同品种硫肥对苋菜镉累积的影响[J]. 农业环境科学学报, 2018, 37(10): 2135-2141. doi: 10.11654/jaes.2018-0164

    Zou R, Wang X B, Chi K Y, et al. Effects of different sulfur fertilizers on cadmium accumulation in Amaranshus mangostanus L. [J]. Journal of Agro-Environment Science, 2018, 37(10): 2135-2141(in Chinese with English abstract). doi: 10.11654/jaes.2018-0164
    [17] Zhou J, Hao M, Liu Y H, et al. Effects of exogenous sulfur on growth and Cd uptake in Chinese cabbage(Brassica campestris spp. pekinensis) in Cd-contaminated soil[J]. Environmental Science and Pollution Research, 2018, 25(16): 15823-15829. doi: 10.1007/s11356-018-1712-0
    [18] Zhang D X, Du G H, Chen D, et al. Effect of elemental sulfur and gypsum application on the bioavailability and redistribution of cadmium during rice growth[J]. Science of the Total Environment, 2019, 657: 1460-1467. doi: 10.1016/j.scitotenv.2018.12.057
    [19] Laura O F L, Julia M M, Fabian P L, et al. From elemental sulfur to hydrogen sulfide in agricultural soils and plants[J]. Molecules, 2019, 24(12), doi: 10.3390/molecules24122282.
    [20] 马殿叶, 郭琳钰, 王梦茜, 等. 长期不同施肥下紫色土有机硫和芳基硫酸酯酶活性变化特征[J]. 植物营养与肥料学报, 2020, 26(7): 1198-1205. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202007003.htm

    Ma D Y, Guo L Y, Wang M Q, et al. Variation tendency of organic sulfur and aryl sulfatase activities under long-term different fertilization in purple soil[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(7): 1198-1205(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202007003.htm
    [21] 王华, 孙志高, 李家兵, 等. 闽江口芦苇与短叶茳芏湿地土壤无机硫形态分布特征及其影响因素[J]. 生态学报, 2019, 39(13): 4921-4932. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201913031.htm

    Wang H, Sun Z G, Li J B, et al. Distribution characteristics and influencing factors of inorganic sulfur forms in the soils of Phragmites australis marsh and Cyperus malaccensis marsh in the Min River Estuary[J]. Acta Ecologica sinica, 2019, 39(13): 4921-4932(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201913031.htm
    [22] 姜勇, 李天鹏, 冯雪, 等. 外源硫输入对草地土壤-植物系统养分有效性的影响[J]. 生态学杂志, 2019, 38(4): 1192-1201. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201904031.htm

    Jiang Y, Li T P, Feng X, et al. Effects of exogenous sulfur input on nutrient availability in soil-plant system of grassland[J]. Chinese Journal of Ecology, 2019, 38(4): 1192-1201(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201904031.htm
    [23] Blum S C, Lehmann J, Solomon D, et al. Sulfur forms in organic substrates affecting S mineralization in soil[J]. Geoderma, 2013, 200: 156-164.
    [24] Zheng H, Wang M, Chen S B, et al. Sulfur application modifies cadmium availability and transfer in the soil-rice system under unstable pe+pH conditions[J]. Ecotoxicology and Environmental Safety, 2019, 184, doi: 10.1016/j.ecoenv.2019.109641.
    [25] 张基茂, 黄运湘. 硫对水稻镉吸收的影响机理[J]. 植物研究, 2017, 31(1): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYJ201701022.htm

    Zhang J M, Huang Y X. Effect of sulfur on Cadmium absorption of rice[J]. Crop Research, 2017, 31(1): 82-87(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYJ201701022.htm
    [26] Cheng H, Wang M Y, Wong M H, et al. Does radial oxygen loss and iron plaque formation on roots alter Cd and Pb uptake and distribution in rice plant tissues[J]. Plant and Soil, 2014, 375(1/2): 137-148.
    [27] Wang X, Hu K, Xu Q, et al. Immobilization of Cd using mixed Enterobacter and Comamonas bacterial reagents in pot experiments with Brassica rapa L. [J]. Environmental Science and Technology, 2020, 54(24): 15731-15741. doi: 10.1021/acs.est.0c03114
    [28] Rabelo F H S, Jordao L T, Lavres J, et al. A glimpse into the symplastic and apoplastic Cd uptake by Massai grass modulated by sulfur nutrition: Plants well-nourished with S as a strategy for phytoextraction[J]. Plant Physiology and Biochemistry, 2017, 121: 48-57. doi: 10.1016/j.plaphy.2017.10.018
    [29] 王焰新, 甘义群, 邓娅敏, 等. 海岸带海陆交互作用过程及其生态环境效应研究进展[J]. 地质科技通报, 2020, 39(1): 1-10. doi: 10.19509/j.cnki.dzkq.2020.0101

    Wang Y X, Gan Y Q, Deng Y M, et al. Land-ocean interactions, and their ecoenvironmental effects in the coastal zone: Current progress and future perspectives[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 1-10 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0101
    [30] Liu T T, Huang D Y, Zhu Q H, et al. Increasing soil moisture faciliates the outcomes of exogenous sulfate rather than element sulfur in reducing cadmium accumulation in rice(Oryza sativa L.)[J]. Ecotoxicology and Environmental Safety, 2020, 191, doi: 10.1016/j.ecoenv.2020.110200.
    [31] Yan S C, Zhang K F, Liu L, et al. Research progress on the forms of cadmium in soil and its affecting factors[J]. China Population, Resources and Environment, 2016, 26: 354-358.
    [32] Vicente V P, Carlos D O, Aurelio G C, et al. Root exudate: From plant to rhizosphere and beyond[J]. Plant Cell Reports, 2020, 39(1): 3-17. doi: 10.1007/s00299-019-02447-5
    [33] Pan W N, Kan J J, Inamdar S, et al. Dissimilatory microbial iron reduction release DOC(dissolved organic carbon) from carbon-ferrihydrite association[J]. Soil Biology and Biochemistry, 2016, 103: 232-240. doi: 10.1016/j.soilbio.2016.08.026
    [34] Wu G M, Hu P J, Zhou J W, et al. Sulfur application combined with water management enhances phytoextraction rate and decreases rice cadmium uptake in a Sedum plumbizincicola-Oryza sativa rotation[J]. Plant and Soil, 2019, 440(1/2): 539-549.
    [35] Wang G X, Hu Z Y, Li S Y, et al. Sulfur controlled cadmium dissolution in pore water of cadmium-contaminated soil as affected by DOC under waterlogging[J]. Chemosphere, 2020, 240, doi: 10.1016/j.chemosphere.2019.124846.
    [36] 董明芳, 郭军康, 冯人伟, 等. Fe2+和Mn2+对水稻根表铁膜及镉吸收转运的影响[J]. 环境污染与防治, 2017, 39(3): 249-253. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201703005.htm

    Dong M F, Guo J K, Feng R W, et al. Effect of Fe2+ and Mn2+ on rice root iron plaque formation and Cd uptake and transportation[J]. Environmental Pollution and Control, 2017, 39(3): 249-253(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201703005.htm
    [37] 顾明华, 李志明, 陈宏, 等. 施锰对土壤锰氧化物形成及镉固定的影响[J]. 生态环境学报, 2020, 29(2): 360-368. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ202002018.htm

    Gu M H, Li Z M, Chen H, et al. Effects of manganese application on the formation of manganese oxides and cadmium fixation in soil[J]. Ecology and Environmental Science, 2020, 29(2): 360-368(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ202002018.htm
    [38] 贺前锋, 桂娟, 刘代欢, 等. 淹水稻田中土壤性质的变化及其对土壤镉活性影响的研究进展[J]. 农业环境科学学报, 2016, 35(12): 2260-2268. doi: 10.11654/jaes.2016-0892

    He Q F, Gui J, Liu D H, et al. Research progress of soil property's changes and its impacts on soil cadmium activity in flooded paddy field[J]. Journal of Agro-Environment Science, 2016, 35(12): 2260-2268(in Chinese with English abstract). doi: 10.11654/jaes.2016-0892
    [39] Hussain B, Li J M, Ma Y B, et al. Effects of Fe and Mn cations on Cd uptake by rice plant in hydroponic culture experiment[J]. Plos One, 2020, 15(12), doi: 10.1371/journal.pone.0243174.
    [40] Cao Z Z, Qin M L, Lin X Y, et al. Sulfur supply reduces cadmium uptake and translocation in rice grains(Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration[J]. Environmental Pollution, 2018, 238: 76-84.
    [41] 王丹, 李鑫, 王代长, 等. 硫素对水稻根系铁锰胶膜形成及吸收镉的影响[J]. 环境科学, 2015, 36(5): 1877-1887. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201505056.htm

    Wang D, Li X, Wang D C, et al. Influence of sulfur on the formation of Fe-Mn plaque on root and uptake of Cd by rice(Oryza sativa L.)[J]. Environmental Science, 2015, 36(5): 1877-1887(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201505056.htm
    [42] 蔡春婷, 汤克丽, 许旭萍, 等. 镉铅复合胁迫下根表铁锰氧化胶膜厚度对美洲商陆富集镉的影响[J]. 环境科学学报, 2017, 37(1): 298-307. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201701037.htm

    Cai C T, Tang K L, Xu X P, et al. Effects of iron-manganese plaque thickness on Cd accumulation in Phytolacca americana under Cd-Pb combined stress[J]. Acta Scientiae Circumstantiae, 2017, 37(1): 298-307(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201701037.htm
    [43] Zandi P M, Yang J J, Xia X, et al. Do sulfur addition and rhizoplane iron plaque affect chromium uptake by rice(Oryza sativa L.) seedlings in solution culture[J]. Journal of Hazardous Materials, 2020, 388, doi: 10.1016/j.jhazmat.2019.121803.
    [44] Zhao M, Liu X W, Li Z T, et al. Inhibition effect of sulfur on Cd activity in soil-rice system and its mechanism[J]. Journal of Hazardous Materials, 2021, 407, doi: 10.1016/j.jhazmat.2020.124647.
    [45] Ma W W, Zhu M X, Yang G P, et al. In situ, high-resolution DGT measurements of dissolved sulfide, iron and phosphorus in sediments of the East China Sea: Insights into phosphorus mobilization and microbial iron reduction[J]. Marine Pollution Bulletin, 2017, 124(1): 400-410. doi: 10.1016/j.marpolbul.2017.07.056
    [46] Li Y Y, Zhao J T, Guo J X, et al. Influence of sulfur on the accumulation of mercury in rice plant(Oryza sativa L.) growing in mercury contaminated soils[J]. Chemosphere, 2017, 182: 293-300. doi: 10.1016/j.chemosphere.2017.04.129
    [47] Sun L J, Zheng C Q, Yang J J, et al. Impact of sulfur(S) fertilization in paddy soils on copper(Cu) accumulation in rice(Oryza sativa L.) plants under flooding conditions[J]. Biology and Fertility of Soils, 2016, 52(1): 31-39. doi: 10.1007/s00374-015-1050-z
    [48] Sun Q, Cui P X, Wu S, et al. Role of reduced sulfur in the transformation of Cd(Ⅱ) immobilized by δ-MnO2[J]. Environmental Science and Technology, 2020, 54(23): 14955-14963. doi: 10.1021/acs.est.0c02936
    [49] Yuan L Y, Du J, Yuan Y H, et al. Effects of 24-epibrassinolide on ascorbate-glutathione cycle and polyamine levels in cucumber roots under Ca(NO3)(2) stress[J]. Acta Physiologiae Plantarum, 2013, 35(1): 253-262. doi: 10.1007/s11738-012-1071-2
    [50] Liang T S, Ding H, Wang G D, et al. Sulfur decreases cadmium translocation and enhances cadmium tolerance by promoting sulfur assimilation and glutathione metabolism in Brassica chinensis L. [J]. Ecotoxicology & Environmental Safety, 2016, 124: 129-137.
    [51] 李冬琴, 王丽丽, 李智鸣, 等. 镉胁迫对高低积累型水稻幼苗非蛋白巯基含量的影响[J]. 农业环境科学学报, 2019, 38(12): 2697-2704. doi: 10.11654/jaes.2019-1086

    Li D Q, Wang L L, Li Z M, et al. Effect of cadmium stress on non-protein thiols in the seedlings of high- and low-cadmium-accumulating rice cultivars[J]. Journal of Agro-Environment Science, 2019, 38(12): 2697-2704(in Chinese with English abstract). doi: 10.11654/jaes.2019-1086
    [52] Lou L L, Kang J Q, Pang H X, et al. Sulfur protects Pakchoi(Brassica chinensis L.) seedlings against cadmium stress by regulating Ascorbate-Glutathione Metabolism[J]. International Journal of Molecular Sciences, 2017, 18(8), doi: 10.3390/ijms18081628.
    [53] Yang J X, Liu Z Y, Wan X M, et al. Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant. [J]. Ecotoxicology and Environmental Safety, 2016, 128: 206-212. doi: 10.1016/j.ecoenv.2016.02.021
    [54] Fan J L, Hu Z Y, Ziadi N, et al. Excessive sulfur supply reduces cadmium accumulation in brown rice(Oryza sativa L.)[J]. Environmental Pollution, 2010, 158(2): 409-415. doi: 10.1016/j.envpol.2009.08.042
    [55] Das U, Rahman M A, Ela J E, et al. Sulfur triggers glutathione and phytochelatin accumulation causing excess Cd bound to the cell wall of roots in alleviating Cd-toxicity in alfalfa[J]. Chemosphere, 2021, 262, doi: 0.1016/j.chemosphere.2020.128361.
    [56] Wiggenhauser M, Aucour A M, Bureau S, et al. Cadmium transfer in contaminated soil-rice systems: Insights from solid-state speciation analysis and stable isotope fractionation[J]. Environmental Pollution, 2021, 269, doi: 10.1016/j.envpol.2020.115934.
    [57] Rehman M Z, Rizwan M, Ghafoor A, et al. Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phytoavailability to wheat and rice under rotation[J]. Environmental Science and Pollution Research, 2015, 22(21): 16897-16906. doi: 10.1007/s11356-015-4883-y
    [58] Wu J W, Mock H P, Muhling K H, et al. Sulfate supply enhances cadmium tolerance in Vicia faba L. plants[J]. Environmental Science and Pollution Research, 2018, 25(33): 33794-33805. doi: 10.1007/s11356-018-3266-6
    [59] 王晓娟, 王文斌, 杨龙, 等. 重金属镉(Cd)在植物体内的转运途径及其调控机制[J]. 生态学报, 2015, 35(23): 7921-7929. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201523035.htm

    Wang X J, Wang W B, Yang L, et al. Transport pathways of cadium(Cd) and its regulatory mechanism in plant[J]. Acta Ecologica Sinica, 2015, 35(23): 7921-7929(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201523035.htm
    [60] 王学华, 戴力. 作物根系镉滞留作用及其生理生化机制[J]. 中国农业科学, 2016, 49(22): 4323-4341. doi: 10.3864/j.issn.0578-1752.2016.22.006

    Wang X H, Dai L. Immobilization effect and its physiology and biochemical mechanism of the cadmium in crop roots[J]. Scientia Agricultura Sinica, 2016, 49(22): 4323-4341(in Chinese with English abstract). doi: 10.3864/j.issn.0578-1752.2016.22.006
    [61] Huang H L, Li M, Rizwan M, et al. Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants[J]. Journal of Hazardous Materials, 2021, 401, doi: 10.1016/j.jhazmat.2020.123393.
    [62] Rizwan M, Ali S, Adrees M, et al. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables[J]. Chemosphere, 2017, 182: 90-105. doi: 10.1016/j.chemosphere.2017.05.013
    [63] 曲丹阳, 顾万荣, 李丽杰, 等. 壳聚糖对镉胁迫下玉米幼苗叶AsA-GSH循环的调控效应[J]. 植物科学学报, 2018, 36(2): 291-299. https://www.cnki.com.cn/Article/CJFDTOTAL-WZXY201802017.htm

    Qu D Y, Gu W R, Li L J, et al. Regulation of chitosan on the ascorbate-glutathione cycle in Zea mays seedling leaves under cadmium stress[J]. Plant Science Journal, 2018, 36(2): 291-299(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WZXY201802017.htm
    [64] 张然然, 张鹏, 都韶婷. 镉毒害下植物氧化胁迫发生及其信号调控机制的研究进展[J]. 应用生态学报, 2016, 27(3): 981-992. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201603039.htm

    Zhang R R, Zhang P, Du S T. Oxidative stress-related signals and their regulation under Cd stress: A review[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 981-992(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201603039.htm
    [65] 杨乾, 范存斐, 王毅, 等. 水杨酸处理诱导采后甜瓜AsA-GSH循环代谢清除过氧化氢的作用及机制[J]. 食品科学, 2021, 42(1): 243-249. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX202101033.htm

    Yang Q, Fan C F, Wang Y, et al. ASA-GSH cycle participates in H2O2 scavenging in muskmelons induced by salicylic acid[J]. Food Science, 2021, 42(1): 243-249(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX202101033.htm
    [66] 范旭杪, 秦丽, 王吉秀, 等. 植物谷胱甘肽代谢与镉耐性研究进展[J]. 西部林业科学, 2019, 48(4): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YNLK201904009.htm

    Fan X M, Qin L, Wang J X, et al. A review of glutathione metabolism and cadmium tolerance in plants[J]. Journal of West China Forestry Science, 2019, 48(4): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YNLK201904009.htm
    [67] Shan C J, Wang B S, Sun H L, et al. H2S induces NO in the regulation of AsA-GSH cycle in wheat seedlings by water stress[J]. Protoplasma, 2020, 257(5): 1487-1493. doi: 10.1007/s00709-020-01510-3
    [68] Honma T, Ohba H, Kaneko-Kadokura A, et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J]. Environmental Scienceand Technology, 2016, 50(8): 4178-4185. doi: 10.1021/acs.est.5b05424
    [69] Shen B B, Wang X M, Zhang Y, et al. The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application[J]. Science of the Total Environment, 2020, 711, doi: 10.1016/j.scitotenv.2019.135229.
    [70] Li X F, Zhou D M. A Meta-Analysis on phenotypic variation in cadmium accumulation of rice and wheat: Implications for food cadmium risk control[J]. Pedosphere, 2019, 29(5): 545-553. doi: 10.1016/S1002-0160(19)60828-3
    [71] Tian T, Zhou H, Gu J F, et al. Cadmium accumulation and bioavailability in paddy soil under different water regimes for different growth stages of rice(Oryza sativa L.)[J]. Plant and Soil, 2019, 440(1/2): 327-339.
    [72] 徐颖菲, 谢国雄, 章明奎. 改良剂配合水分管理减少水稻吸收土壤中镉的研究[J]. 水土保持学报, 2019, 33(6): 356-360. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201906050.htm

    Xu Y F, Xie G X, Zhang M K. Reduction of cadmium uptake of rice plant from soil by application of amendments combined with water management[J]. Journal of Soil and Water Conservation, 2019, 33(6): 356-360(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201906050.htm
    [73] Wan Y N, Huang Q Q, Camara A Y, et al. Water management impacts on the solubility of Cd, Pb, As, and Cr and their uptake by rice in two contaminated paddy soils[J]. Chemosphere, 2019, 228: 360-369. doi: 10.1016/j.chemosphere.2019.04.133
    [74] Wu C, Shi L Z, Xue S G, et al. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils[J]. Science of the Total Environment, 2019, 647: 1158-1168. doi: 10.1016/j.scitotenv.2018.08.087
    [75] Liu K L, Han T F, Huang J, et al. Links between potassium of soil aggregates and pH levels in acidic soils under long-term fertilization regimes[J]. Soil and Tillage Research, 2020, 197, doi: 10.1016/j.still.2019.104480.
    [76] Wan W J, Tan J D, Wang Y, et al. Responses of the rhizosphere bacterial community in acidic crop soil to pH: Changes in diversity, composition, interaction, and function[J]. Science of the Total Environment, 2020, 700, doi: 10.1016/j.scitotenv.2019.134418.
    [77] Zhao C C, Gupta V V S R, Degryse F, et al. Abundance and diversity of sulphur-oxidising bacteria and their role in oxidising elemental sulphur in cropping soils[J]. Biol Fertil Soils, 2017, 53(2): 159-169. doi: 10.1007/s00374-016-1162-0
    [78] Monika T, Aneta L, Barbara F M, et al. Bioavailability of sulfur from waste Obtained during biogas desulfurization and the effect of sulfur on soil acidity and biological activity[J]. Processes, 2020, 8(7), doi: 10.3390/pr8070863.
    [79] Zhao C C, Degryse F, Gupta V, et al. Elemental sulfur oxidation in Australian cropping soils[J]. Soil Science Society of America Journal, 2015, 79(1): 89-96. doi: 10.2136/sssaj2014.08.0314
    [80] Wu Z Y, Naveed S, Zhang C H, et al. Adequate supply of sulfur simultaneously enhances iron uptake and reduces cadmium accumulation in rice grown in hydroponic culture[J]. Environmental Pollution, 2020, 262, doi: 10.1016/j.envpol.2020.114327.
    [81] Ding C F, Du S Y, Ma Y B, et al. Changes in the pH of paddy soils after flooding and drainage: Modeling and validation[J]. Geoderma, 2019, 337: 511-513. doi: 10.1016/j.geoderma.2018.10.012
    [82] Ahmed H P, Schoenau J J, King T, et al. Effects of seed-placed sulfur fertilizers on canola, wheat, and pea yield; sulfur uptake; and soil sulfate concentrations over time in three prairie soils[J]. Journal of Plant Nutrition, 2017, 40(4): 543-557. doi: 10.1080/01904167.2016.1262413
    [83] 黄荣, 徐应明, 黄青青, 等. 二种钾肥对海泡石钝化修复镉污染土壤效应影响的研究[J]. 中国生态农业学报, 2018, 26(8): 1249-1256. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201808017.htm

    Huang R, Xu Y M, Huang Q Q, et al. Effect of potassium fertilizers on immobilization remediation of Cd-polluted soils using sepiolite[J]. Chinese Journal of Eco-Agriculture, 2018, 26(8): 1249-1256(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201808017.htm
    [84] 霍文敏, 邹茸, 王丽, 等. 不同氮肥水平下玉米与龙葵竞争吸收镉的差异性研究[J]. 植物营养与肥料学报, 2018, 24(4): 1077-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201804024.htm

    Huo W M, Zou R, Wang L, et al. Difference of the cadmium uptake by competition between Zea mays L. and Solanum nigrum L. under different nitrogen fertilizer levels[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 1077-1087(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201804024.htm
    [85] Yang W, Dai H P, Skuza L, et al. Strengthening role and the mechanism of optimum nitrogen addition in relation to Solanum nigrum L. Cd hyperaccumulation in soil[J]. Ecotoxicology and Environmental Safety, 2019, 182, doi: 10.1016/j.ecoenv.2019.109444.
    [86] Yang W, Dai H P, Dou X K, et al. Effect and mechanism of commonly used four nitrogen fertilizers and three organic fertilizers on Solanum nigrum L. hyperaccumulating Cd[J]. Environmental Science and Pollution Research, 2019, 26(13): 12940-12947. doi: 10.1007/s11356-019-04848-1
    [87] Zhang C J, Sale P W G, Doronila A I, et al. Australian native plant species Carpobrotus rossii(Haw.) Schwantes shows the potential of cadmium phytoremediation[J]. Environmental Science and Pollution Research, 2014, 21(16): 9843-9851. doi: 10.1007/s11356-014-2919-3
    [88] Wang K, Fu G P, Yu Y, et al. Effects of different potassium fertilizers on cadmium uptake by three crops[J]. Environmental Science and Pollution Research, 2019, 26(26): 27014-27022. doi: 10.1007/s11356-019-05930-4
    [89] 彭鸥, 周靖恒, 喻崴伦, 等. 硅硫材料对复合污染土壤镉砷赋存形态的影响[J]. 农业环境科学学报, 2020, 39(2): 294-303. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202002010.htm

    Peng O, Zhou J H, Yu W L, et al. Effects of silicon- and sulfur-containing materials on the dynamics of cadmium and arsenic species in compound polluted soil[J]. Journal of Agro-Environment Science, 2020, 39(2): 294-303(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202002010.htm
    [90] Li D Q, Chen G K, Lu Q, et al. Responses of two kidney bean(Phaseolus vulgaris) cultivars to the combined stress of sulfur deficiency and cadmium toxicity[J]. Biometals, 2018, 31(1): 17-28. doi: 10.1007/s10534-017-0052-8
    [91] Wang P, Chen H P, Kopittke P M, et al. Cadmium contamination in agricultural soils of China and the impact on food safety[J]. Environmental Pollution, 2019, 249: 1038-1048. doi: 10.1016/j.envpol.2019.03.063
    [92] 潘瑶, 尹洁, 高子平, 等. 水稻幼苗镉积累特性及亚细胞分布特征的影响[J]. 农业资源与环境学报, 2015, 32(3): 275-281. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201503011.htm

    Pan Y, Yin J, Gao Z P, et al. Effects of sulfur on the accumulation and subcellular distribution of cadmium in ricr seeding[J]. Journal of Agricultural Resources and Environment, 2015, 32(3): 275-281(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201503011.htm
  • 加载中
图(1)
计量
  • 文章访问数:  974
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-09

目录

    /

    返回文章
    返回