Mineralization characteristics and geological significance of Rb-rich granitic pegmatite veins in Shangnan-Danfeng area, eastern Qinling belt
-
摘要:
花岗伟晶岩作为稀有金属矿产的重要来源,其矿化特征有待深入探讨。采用野外地质调查,室内镜下鉴定以及主量、微量和稀土元素含量分析相结合的方法,系统研究了东秦岭商丹地区资峪沟富铷花岗伟晶岩脉的岩石学和地球化学特征。结果显示:资峪沟花岗伟晶岩脉主要集中产出于丹凤岩群中,经综合评价后圈定出14条出露的富铷脉体,依据石榴石含量和岩石蚀变类型可将其划分为微斜长石花岗伟晶岩、富石榴石微斜长石花岗伟晶岩、云英岩化微斜长石花岗伟晶岩、云英岩化富石榴石微斜长石花岗伟晶岩与硅化微斜长石花岗伟晶岩5种类型;资峪沟花岗伟晶岩脉总体显示为过铝质,富集Rb、高场强元素(HFSE)和重稀土元素(HREE),亏损Ba, Sr和Ti,其中少含或不含石榴石且未发生蚀变的花岗伟晶岩脉通常具有较高的Rb含量,因此,可以将原生微斜长石、石榴石及次生白云母、石英作为标型矿物来综合判断花岗伟晶岩脉的铷矿化程度;资峪沟花岗伟晶岩脉的形成时代明显晚于宽坪花岗岩体,二者的地球化学特征存在显著差异,经综合分析得出花岗伟晶岩脉并非由宽坪花岗岩体的岩浆演化而来,其母岩可能位于宽坪花岗岩体下方的更深部位。
Abstract:Granitic pegmatite is an important source of rare metal minerals, but its mineralization characteristics need to be further studied. This study conducted a combined field geological, indoor microscopic and major-trace elemental investigation on the petrological and geochemical characteristics of the Ziyugou Rb-rich granitic pegmatite veins in the Shangnan-Danfeng area of the eastern Qinling belt. The Ziyugou granitic pegmatites intruded the Danfeng Group. After comprehensive evaluation, 14 Rb-rich granitic pegmatite veins have been identified. On the basis of garnet contents and alteration types, the granitic pegmatites can be divided into five types: microcline granitic pegmatite, garnet-rich microcline granitic pegmatite, greisenized microcline granitic pegmatite, greisenized garnet-rich microcline granitic pegmatite and silicified microcline granitic pegmatite. The Ziyugou granitic pegmatite veins are generally peraluminous, rich in Rb, HFSE and HREE but depleted in Ba, Sr and Ti. Granitic pegmatite veins with little or without alteration usually contain highest Rb contents. Therefore, primary microcline, garnet, secondary muscovite and quartz can be served as key minerals to effectively indicate the Rb fertility of granitic pegmatite veins. The Ziyugou granitic pegmatite veins obviously postdate the Kuanping granite, and both of them exhibit significantly different geochemical characteristics. These features strongly indicate that the Ziyugou granitic pegmatite veins cannot be derived from the magmas forming the Kuanping granite, and their parent rocks were speculated to be located in depth.
-
图 1 商南-丹凤地区地质简图(据文献[15]修改)
K-E.白垩系-古近系红色砂砾岩;Pt3-Pz1.丹凤岩群蛇绿岩;Pt1QN.秦岭岩群混合岩、片麻岩、大理岩;γ3.加里东期花岗岩;γ2.晋宁期花岗岩;γδ2.晋宁期花岗闪长岩;ε2.晋宁期橄榄岩。花岗伟晶岩密集区:A.商南; B.峦庄; C.官坡; D.龙泉坪。图中紫色方框为研究区的大致范围
Figure 1. Geological map of the Shangnan-Danfeng area
图 5 资峪沟岩石样品SiO2-(Na2O+K2O)判别图解(据文献[46])
1.橄榄辉长岩;2a.碱性辉长岩;2b.亚碱性辉长岩;3.辉长闪长岩;4.闪长岩;5.花岗闪长岩;6.花岗岩;7.硅英岩;8.二长辉长岩;9.二长闪长岩;10.二长岩;11.石英二长岩;12.正长岩;13.似长石辉长岩;14.似长石二长辉长岩;15.似长石二长正长岩;16.似长石正长岩;17.似长石岩;18.方钠霓辉岩/磷霞岩/粗白榴岩;Ir.Irvine分界线,上方为碱性,下方为亚碱性
Figure 5. SiO2 versus (Na2O+K2O) diagram of the Ziyugou rock samples
图 8 资峪沟花岗伟晶岩w(Rb)-w(SiO2)二元图解(岩石代号同图 5)
Figure 8. Rb versus SiO2 diagram of the Ziyugou granitic pegmatites
表 1 资峪沟岩石样品主量元素和微量元素分析结果
Table 1. Major element and trace element compositions of the Ziyugou rock samples
中国花岗岩类
平均成分[45]MP GrP DZ002 DZ004 DZ022 DZ067 DZ068 DZ079 DZ106 DZ107 DZ108 DZ001 DZ005 DZ006 DZ018 SiO2 72.20 74.73 74.54 75.42 77.50 75.36 74.47 76.30 75.55 75.29 78.03 75.58 75.30 75.62 TiO2 0.28 0.02 0.01 0.02 0.02 0.03 0.04 0.01 0.03 0.07 0.02 0.04 0.03 0.03 Al2O3 14.20 15.26 15.27 14.55 13.40 13.89 13.94 12.86 13.47 14.31 12.33 13.33 13.75 13.90 TFe2O3 2.14 0.26 0.62 0.19 0.47 0.37 1.41 0.10 0.19 0.52 1.53 1.29 0.61 0.58 MnO 0.05 0.02 0.11 0.01 0.07 0.02 0.15 0.01 0.01 0.26 0.91 0.76 0.20 0.37 MgO 0.52 0.01 0.05 0.01 0.01 0.05 0.01 0.01 0.01 0.02 0.03 0.01 0.01 0.01 CaO wB/% 1.35 0.21 0.56 0.64 0.16 0.23 0.29 0.03 0.06 0.83 0.78 0.52 0.39 0.56 Na2O 3.54 3.16 5.04 5.07 3.59 2.14 3.10 1.81 1.59 4.38 5.27 4.68 3.84 5.48 K2O 4.32 5.99 2.88 3.92 4.47 7.53 6.45 8.21 8.73 3.17 0.84 3.25 4.92 2.51 P2O5 0.09 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 烧失量 - 0.55 1.18 0.35 0.41 0.39 0.21 0.29 0.45 0.80 0.61 0.41 0.54 0.49 总计 - 100.21 100.27 100.18 100.11 100.03 100.07 99.63 100.09 99.66 100.36 99.88 99.60 99.55 w(Na2O+K2O) 7.86 9.15 7.92 8.99 8.06 9.67 9.55 10.02 10.32 7.55 6.11 7.93 8.76 7.99 K2O/Na2O 1.22 1.90 0.57 0.77 1.25 3.52 2.08 4.54 5.49 0.72 0.16 0.69 1.28 0.46 δ 2.12 2.64 1.99 2.49 1.88 2.89 2.90 3.02 3.27 1.77 1.07 1.93 2.38 1.96 A/NK 1.35 1.30 1.34 1.16 1.25 1.19 1.15 1.08 1.11 1.34 1.29 1.19 1.18 1.18 A/CNK 1.09 1.26 1.23 1.06 1.21 1.15 1.10 1.08 1.10 1.18 1.12 1.10 1.11 1.09 La 33.00 1.86 5.23 1.39 3.84 6.73 5.03 0.54 0.69 3.49 6.02 11.61 3.70 4.69 Ce 62.00 6.44 13.86 2.60 14.83 17.09 7.81 1.32 1.49 6.20 13.78 29.73 9.93 12.25 Pr wB/10-6 7.00 0.39 1.22 0.28 1.06 1.60 1.07 0.10 0.11 0.74 1.66 3.07 0.94 1.18 Nd 25.40 1.55 4.81 1.13 3.85 5.72 3.51 0.37 0.40 3.12 7.94 11.87 4.18 4.77 Sm 4.60 0.47 1.63 0.33 1.00 1.61 0.88 0.11 0.15 1.23 4.93 3.72 2.01 2.02 Eu 0.82 0.01 0.03 0.03 0.01 0.10 0.07 0.01 0.02 0.09 0.06 0.02 0.02 0.04 Gd 4.50 0.55 2.00 0.41 1.07 1.51 0.88 0.15 0.18 2.26 8.41 4.28 3.13 2.87 Tb 0.64 0.12 0.48 0.09 0.17 0.26 0.22 0.03 0.04 0.64 2.39 1.08 0.76 0.65 Dy 4.00 0.79 3.79 0.58 1.01 1.34 1.65 0.23 0.32 5.83 21.29 9.57 5.77 5.39 Ho 0.79 0.17 0.84 0.13 0.17 0.21 0.35 0.06 0.08 1.57 5.85 2.37 1.30 1.39 Er wB/10-6 2.24 0.56 3.10 0.43 0.47 0.58 1.28 0.19 0.27 6.30 26.04 9.44 4.62 5.63 Tm 0.38 0.10 0.63 0.07 0.08 0.09 0.26 0.03 0.05 1.29 6.11 2.05 0.90 1.26 Yb 2.10 0.75 5.35 0.54 0.63 0.70 2.38 0.25 0.38 11.44 58.43 18.01 7.34 11.85 Lu 0.33 0.11 0.87 0.09 0.09 0.10 0.38 0.04 0.07 2.08 11.42 2.95 1.22 2.10 Y 20.00 6.04 29.31 4.26 11.14 13.85 14.96 1.86 2.52 54.97 183.15 89.57 42.56 52.43 ΣREE 147.80 13.87 43.84 8.10 28.28 37.64 25.77 3.43 4.25 46.28 174.33 109.77 45.82 56.09 LREE 132.82 10.72 26.78 5.76 24.59 32.85 18.37 2.45 2.86 14.87 34.39 60.02 20.78 24.95 HREE 14.98 3.15 17.06 2.34 3.69 4.79 7.40 0.98 1.39 31.41 139.94 49.75 25.04 31.14 LREE/HREE 8.87 3.40 1.57 2.46 6.66 6.86 2.48 2.50 2.06 0.47 0.25 1.21 0.83 0.80 (La/Yb)N 11.27 1.78 0.70 1.85 4.37 6.90 1.52 1.55 1.30 0.22 0.07 0.46 0.36 0.28 δEu 0.54 0.06 0.05 0.25 0.03 0.19 0.24 0.24 0.37 0.16 0.03 0.02 0.02 0.05 δCe 0.95 1.76 1.30 0.96 1.77 1.23 0.79 1.29 1.20 0.90 1.05 1.19 1.27 1.24 Li 20.00 16.17 5.56 2.31 8.30 18.23 4.09 5.09 1.08 9.39 14.21 18.22 16.82 16.06 Be 2.60 2.07 4.14 3.63 3.82 3.20 4.49 0.77 0.54 2.89 3.55 2.26 1.82 4.36 Rb 158.00 652.28 292.29 249.89 1167.10 768.00 677.88 666.76 483.91 186.21 75.83 239.88 462.81 242.42 Sr 174.00 3.28 4.93 10.98 3.11 96.62 16.98 6.49 9.67 17.34 7.21 2.11 3.95 2.65 Ba 557.00 7.97 12.23 8.91 8.96 159.93 28.51 21.95 20.83 30.16 9.95 2.38 2.26 3.40 Cs 3.80 11.65 9.14 3.98 24.33 14.09 11.52 15.35 3.92 7.70 4.46 4.09 10.34 4.74 Nb wB/10-6 13.40 29.28 70.31 11.23 54.39 43.54 115.48 4.07 20.93 40.05 184.71 70.18 89.60 54.80 Ta 1.27 3.06 10.65 1.56 18.71 22.50 22.94 1.48 2.51 6.43 11.76 15.50 6.96 5.70 Zr 147.00 21.80 104.11 6.40 17.67 16.18 57.81 2.04 4.50 58.94 362.31 69.32 65.37 79.04 Hf 5.00 1.35 6.53 0.41 1.88 1.46 4.73 0.10 0.21 3.40 18.85 4.69 3.71 5.33 Th 16.60 2.25 8.95 5.17 3.88 4.57 4.88 0.68 1.81 18.46 30.77 13.55 10.90 8.81 U 2.80 3.48 12.79 1.43 6.26 2.55 12.06 0.99 1.08 4.90 35.17 15.16 22.07 8.75 Rb/Sr 0.91 198.57 59.33 22.76 375.86 7.95 39.92 102.70 50.06 10.74 10.52 113.61 117.29 91.44 Nb/Ta 10.55 9.56 6.60 7.19 2.91 1.94 5.03 2.75 8.35 6.23 15.70 4.53 12.87 9.62 Zr/Hf 29.40 16.21 15.95 15.70 9.42 11.08 12.21 20.34 21.37 17.35 19.22 14.79 17.60 14.82 GMP GGrP SMP GM MG DZ008-2 DZ160 ZY011 DZ148 DZ037 DZ038 DZ069 ZY001 ZY002 ZY003 ZY004 ZY009 DZ034 DZ060 SiO2 78.97 76.87 75.66 78.22 76.57 77.09 75.52 75.23 75.85 76.48 78.25 50.59 74.81 77.43 TiO2 0.08 0.04 0.10 0.04 0.02 0.03 0.02 0.05 0.05 0.03 0.02 0.73 0.22 0.07 Al2O3 12.42 13.66 13.25 13.55 12.71 13.56 14.29 14.53 14.61 14.04 12.85 12.30 13.91 13.43 TFe2O3 0.55 0.33 1.12 0.28 0.27 0.59 0.30 0.52 0.53 0.46 0.40 9.36 1.56 0.50 MnO 0.17 0.03 0.20 0.08 0.04 0.03 0.03 0.07 0.07 0.23 0.04 0.16 0.03 0.02 MgO 0.04 0.02 0.07 0.01 0.01 0.05 0.01 0.06 0.07 0.03 0.19 7.54 0.46 0.01 CaO wB/% 0.89 0.59 0.85 0.68 0.22 1.13 0.14 0.75 0.74 0.53 1.11 17.34 1.13 1.10 Na2O 5.59 4.48 5.36 6.34 2.14 4.84 2.77 5.57 5.63 4.61 5.16 0.38 2.91 5.46 K2O 0.78 3.59 1.90 0.61 7.14 1.75 6.59 1.92 1.91 3.12 0.89 2.25 3.80 0.64 P2O5 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.59 0.07 0.01 烧失量 0.70 0.52 0.42 0.35 0.52 0.74 0.38 0.69 0.71 0.59 1.28 7.54 1.51 0.56 总计 100.20 100.15 98.96 100.17 99.64 99.82 100.05 99.40 100.18 100.13 100.19 98.78 100.41 99.23 Na2O+K2O 6.37 8.07 7.26 6.95 9.28 6.59 9.36 7.49 7.54 7.73 6.05 2.63 6.71 6.10 K2O/Na2O 0.14 0.80 0.35 0.10 3.34 0.36 2.38 0.34 0.34 0.68 0.17 5.92 1.31 0.12 δ 1.13 1.92 1.61 1.37 2.57 1.27 2.69 1.74 1.73 1.78 1.04 0.91 1.42 1.08 A/NK 1.24 1.21 1.22 1.22 1.13 1.38 1.22 1.29 1.29 1.28 1.36 4.01 1.56 1.39 A/CNK 1.06 1.11 1.07 1.10 1.09 1.14 1.19 1.15 1.15 1.18 1.12 0.35 1.27 1.15 La 7.08 6.79 29.78 11.37 21.08 28.21 1.61 5.02 15.01 5.15 1.71 101.95 23.37 0.51 Ce 17.44 13.14 60.88 32.42 62.29 64.86 3.67 10.68 30.35 11.98 2.74 212.58 39.66 2.71 Pr wB/10-6 1.72 1.51 7.02 2.97 3.83 5.43 0.31 1.13 3.91 1.20 0.30 23.96 3.80 0.15 Nd 6.79 5.39 27.46 11.25 12.68 18.44 1.06 4.27 15.68 4.62 1.10 92.64 12.39 0.66 Sm 2.66 2.05 9.76 3.64 2.39 3.94 0.32 1.25 5.90 1.41 0.46 16.81 2.12 0.49 Eu 0.03 0.05 0.10 0.03 0.11 0.26 0.02 0.03 0.14 0.04 0.04 3.85 0.47 0.04 Gd 3.90 2.64 14.81 3.48 2.39 4.37 0.34 1.36 8.10 1.63 0.76 13.66 1.90 1.01 Tb 0.98 0.66 3.58 0.68 0.39 0.78 0.08 0.27 1.72 0.36 0.21 1.49 0.26 0.30 Dy 7.79 4.74 28.07 4.26 2.54 5.71 0.53 2.03 12.65 2.98 1.71 6.58 1.35 2.40 Ho 1.79 0.96 6.53 0.75 0.58 1.36 0.10 0.46 2.96 0.77 0.40 1.06 0.27 0.54 Er 6.76 3.28 22.40 2.57 2.03 4.71 0.30 1.72 11.44 3.20 1.58 2.66 0.78 1.78 Tm wB/10-6 1.40 0.66 3.86 0.51 0.36 0.79 0.06 0.37 2.37 0.72 0.32 0.33 0.12 0.28 Yb 12.23 5.38 27.97 4.29 2.74 5.84 0.51 3.32 21.05 6.81 2.87 2.02 0.95 1.82 Lu 2.11 0.85 4.26 0.70 0.48 0.93 0.08 0.60 3.59 1.22 0.47 0.28 0.16 0.23 Y 68.65 32.39 204.05 25.42 19.84 46.18 3.57 18.32 121.79 27.61 13.55 28.78 7.54 13.82 ΣREE 72.68 48.10 246.48 78.92 113.89 145.63 8.99 32.51 134.87 42.09 14.67 479.87 87.60 12.92 LREE 35.72 28.93 135.00 61.68 102.38 121.14 6.99 22.38 70.99 24.40 6.35 451.79 81.81 4.56 HREE 36.96 19.17 111.48 17.24 11.51 24.49 2.00 10.13 63.88 17.69 8.32 28.08 5.79 8.36 LREE/HREE 0.97 1.51 1.21 3.58 8.89 4.95 3.50 2.21 1.11 1.38 0.76 16.09 14.13 0.55 (La/Yb)N 0.42 0.91 0.76 1.90 5.52 3.46 2.26 1.08 0.51 0.54 0.43 36.20 17.65 0.20 δEu 0.03 0.07 0.03 0.03 0.14 0.19 0.18 0.07 0.06 0.08 0.21 0.75 0.70 0.17 δCe 1.19 0.96 1.00 1.34 1.57 1.20 1.19 1.06 0.95 1.14 0.86 1.02 0.94 2.37 Li 19.63 19.26 14.58 24.74 2.20 7.58 5.14 6.36 14.37 6.57 0.95 170.86 45.63 1.43 Be 5.23 2.42 4.26 5.01 0.92 3.29 2.12 6.52 6.11 5.88 5.07 5.28 2.70 3.97 Rb 70.20 265.80 133.78 65.05 392.89 81.00 897.15 157.80 369.08 317.44 31.56 184.12 182.62 51.56 Sr 5.49 6.14 13.60 4.00 18.38 30.41 7.67 10.78 32.03 5.71 6.81 344.97 148.39 9.77 Ba 3.45 10.57 10.45 3.26 50.10 33.86 17.11 5.82 29.78 6.70 3.61 710.92 866.65 6.78 Cs 4.70 3.39 5.89 3.77 6.72 2.62 12.02 3.03 7.85 14.86 1.16 27.41 25.60 1.09 Nb 54.92 103.28 241.24 51.53 8.90 9.01 36.21 15.73 94.97 25.84 6.50 14.77 12.59 36.79 Ta wB/10-6 4.99 8.54 12.59 7.12 3.09 1.25 9.08 3.35 25.26 5.95 1.43 0.98 1.49 2.39 Zr 31.74 27.10 29.13 35.29 16.08 55.01 10.54 13.47 129.41 37.64 6.44 256.32 136.14 3.31 Hf 1.73 1.39 1.48 2.12 0.76 3.06 0.88 0.85 7.72 2.42 0.32 6.18 4.05 0.18 Th 13.78 13.27 47.50 15.57 11.56 19.31 1.77 8.36 34.76 7.01 1.11 28.99 19.22 3.98 U 6.11 15.64 74.59 11.74 10.89 5.08 3.53 3.71 39.32 6.72 8.71 10.56 2.88 12.85 Rb/Sr 12.78 43.29 9.84 16.27 21.38 2.66 117.04 14.64 11.52 55.60 4.64 0.53 1.23 5.28 Nb/Ta 11.02 12.09 19.16 7.24 2.88 7.23 3.99 4.69 3.76 4.35 4.53 15.07 8.43 15.37 Zr/Hf 18.39 19.44 19.73 16.62 21.03 18.00 12.04 15.89 16.76 15.53 20.28 41.47 33.61 18.20 注: MP.微斜长石花岗伟晶岩;GrP.富石榴石微斜长石花岗伟晶岩;GMP.云英岩化微斜长石花岗伟晶岩;GGrP.云英岩化富石榴石微斜长石花岗伟晶岩;SMP.硅化微斜长石花岗伟晶岩;GM.丹凤岩群(辉长质糜棱岩);MG.宽坪花岗岩体(糜棱岩化花岗岩);下同 -
[1] 王登红, 王瑞江, 李建康, 等. 中国三稀矿产资源战略调查研究进展综述[J]. 中国地质, 2013, 40(2): 361-370. doi: 10.3969/j.issn.1000-3657.2013.02.001Wang D H, Wang R J, Li J K, et al. The progress in the strategic research and survey of rare earth, rare metal and rare-scattered elements mineral resources[J]. Geology in China, 2013, 40(2): 361-370 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2013.02.001 [2] 王登红, 王瑞江, 孙艳, 等. 我国三稀(稀有稀土稀散)矿产资源调查研究成果综述[J]. 地球学报, 2016, 37(5): 569-580. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201605006.htmWang D H, Wang R J, Sun Y, et al. A review of achievements in the three-type rare mineral resources (rare resources, rare earth and rarely scattered resources) survey in China[J]. Acta Geoscientica Sinica, 2016, 37(5): 569-580 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201605006.htm [3] London D, Kontak D J. Granitic pegmatites: Scientific wonders and economic bonanzas[J]. Elements, 2012, 8(4): 257-261. doi: 10.2113/gselements.8.4.257 [4] Linnen R L, Van Lichtervelde M, Ĉerný P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4): 275-280. doi: 10.2113/gselements.8.4.275 [5] Sirbescu M L C, Nabelek P I. Crystallization conditions and evolution of magmatic fluids in the Harney Peak granite and associated pegmatites, Black Hills, South Dakota: Evidence from fluid inclusions[J]. Geochimica et Cosmochimica Acta, 2003, 67(13): 2443-2465. doi: 10.1016/S0016-7037(02)01408-4 [6] Kontak D J. Nature and origin of an LCT-suite pegmatite with late-stage sodium enrichment, Brazil Lake, Yarmouth County, Nova Scotia: I. Geological setting and petrology[J]. The Canadian Mineralogist, 2006, 44(3): 563-598. doi: 10.2113/gscanmin.44.3.563 [7] Zajacz Z, Halter W E, Pettke T, et al. Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: Controls on element partitioning[J]. Geochimica et Cosmochimica Acta, 2008, 72(8): 2169-2197. doi: 10.1016/j.gca.2008.01.034 [8] Kontak D J, Kyser T K. Nature and origin of an LCT-suite pegmatite with late-stage sodium enrichment, Brazil Lake, Yarmouth County, Nova Scotia: Ⅱ. Implications of stable isotopes (δ18O, δD) for magma source, internal crystallization and nature of sodium metasomatism[J]. The Canadian Mineralogist, 2009, 47(4): 745-764. doi: 10.3749/canmin.47.4.745 [9] Thomas R, Davidson P, Beurlen H. The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research[J]. Mineralogy and Petrology, 2012, 106(1): 55-73. [10] Ĉerný P, Ercit T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43(6): 2005-2026. doi: 10.2113/gscanmin.43.6.2005 [11] Ĉerný P, London D, Novák M. Granitic pegmatites as reflections of their sources[J]. Elements, 2012, 8(4): 289-294. doi: 10.2113/gselements.8.4.289 [12] London D, Morgan G B. The pegmatite puzzle[J]. Elements, 2012, 8(4): 263-268. doi: 10.2113/gselements.8.4.263 [13] Hulsbosch N, Hertogen J, Dewaele S, et al. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups[J]. Geochimica et Cosmochimica Acta, 2014, 132: 349-374. doi: 10.1016/j.gca.2014.02.006 [14] London D. Pegmatites[J]. The Canadian Mineralogist, 2008, 46(10): 347. [15] 陈西京, 王淑荣, 张秀颖. 秦岭花岗伟晶岩基本特征与成矿作用[M]. 北京: 地质出版社, 1993.Chen X J, Wang S R, Zhang X Y. Basic characteristics and mineralization of granitic pegmatites in Qinling belt[M]. Beijing: Geological Publishing House, 1993(in Chinese). [16] 卢欣祥, 祝朝辉, 谷德敏, 等. 东秦岭花岗伟晶岩的基本地质矿化特征[J]. 地质论评, 2010, 56(1): 21-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201001006.htmLu X X, Zhu C H, Gu D M, et al. The main geological and metallogenic characteristics of granitic pegmatite in eastern Qinling belt[J]. Geological Review, 2010, 56(1): 21-30 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201001006.htm [17] 赵如意, 李卫红, 姜常义, 等. 陕西丹凤地区含铀花岗伟晶岩年龄及其构造意义[J]. 矿物学报, 2013, 33(增刊2): 880-882. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2013S2489.htmZhao R Y, Li W H, Jiang C Y, et al. Formation age and tectonic significance of U-bearing granitic pegmatite in Danfeng area, Shaanxi Province[J]. Acta Mineralogica Sinica, 2013, 33(S2): 880-882 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2013S2489.htm [18] 朱焕巧, 李卫红, 恵争卜, 等. 陕西丹凤三角地区花岗伟晶岩铀-稀有元素矿化特征及成矿作用分析[J]. 西北地质, 2015, 48(1): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201501023.htmZhu H Q, Li W H, Hui Z P, et al. Mineralization characteristics and metallogenesis of granitic pegmatite uranium and other rare metals in the Danfeng triangle area, Shaanxi[J]. Northwestern Geology, 2015, 48(1): 172-178 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201501023.htm [19] 许锋, 宋公社, 王明志, 等. 陕西省丹凤资峪沟伟晶岩型铷矿床地质特征及找矿前景[J]. 华南地质与矿产, 2016, 32(1): 59-67. doi: 10.3969/j.issn.1007-3701.2016.01.008Xu F, Song G S, Wang M Z, et al. Geological characteristics and prospect fore-ground of pegmatite type rubidium deposit in Ziyugou, Danfeng, Shaanxi Province[J]. Geology and Mineral Resources of South China, 2016, 32(1): 59-67 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-3701.2016.01.008 [20] Ĉerný P. Fertile granites of Precambrian rare-element pegmatite fields: Is geochemistry controlled by tectonic setting or source lithologies?[J]. Precambrian Research, 1991, 51(1/4): 429-468. [21] Teertstra D K, Cerny P, Hawthorne F C. Rubidium feldspars in granitic pegmatites[J]. The Canadian Mineralogist, 1998, 36(2): 483-496. [22] 张辉, 刘丛强. 新疆阿尔泰可可托海3号伟晶岩脉磷灰石矿物中稀土元素"四分组效应"及其意义[J]. 地球化学, 2001, 30(4): 323-334. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200104003.htmZhang H, Liu C Q. Tetrad effect of REE in apatites from pegmatite No. 3, Altay, Xinjiang and its implications[J]. Geochimica, 2001, 30(4): 323-334 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200104003.htm [23] Pekov I V, Kononkova N N. Rubidium mineralization in rare-element granitic pegmatites of the Voron'i tundras, Kola Peninsula, Russia[J]. Geochemistry International, 2010, 48(7): 695-713. doi: 10.1134/S0016702910070062 [24] 李建康, 王永磊, 孙艳. 湖南桂东小江花岗岩体: 一个潜在Rb-Nb-Y矿床的岩石化学特征及其成矿远景[J]. 大地构造与成矿学, 2012, 36(3): 350-356. doi: 10.3969/j.issn.1001-1552.2012.03.006Li J K, Wang Y L, Sun Y. The petrochemical feactures and Rb-Nb-Y potential of the Xiaojiang granitic intrusion, Guidong, Hunan[J]. Geotectonica et Metallogenia, 2012, 36(3): 350-356 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2012.03.006 [25] 郭正林, 申茂德, 郭旭吉, 等. 阿尔泰地区花岗伟晶岩稀有金属成矿机理及找矿标志浅析[J]. 新疆地质, 2013, 31(增刊1): 77-83.Guo Z L, Shen M D, Guo X J, et al. Analysis of prospecting and metallogenisis of rare metal in granitic pegmatite from Altai[J]. Xinjiang Geology, 2013, 31(S1): 77-83 (in Chinese with English abstract). [26] 彭素霞, 杨合群, 程建新, 等. 阿尔泰成矿省地质建造的成矿系列家族[J]. 地质科技情报, 2014, 33(4): 135-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404021.htmPeng S X, Yang H Q, Cheng J X, et al. The metallogenic series families of geological formation in Altay metallogenic Province[J]. Geological Science and Technology Information, 2014, 33(4): 135-142 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404021.htm [27] 周会武, 李通国, 张有奎, 等. 甘肃省铷矿地质特征与成矿规律分析[J]. 矿物学报, 2015, 35(1): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201501012.htmZhou H W, Li T G, Zhang Y K, et al. Research on characteristics and metallogenic regularity of Rb ore in Gansu Province[J]. Acta Mineralogica Sinica, 2015, 35(1): 73-78 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201501012.htm [28] 曹振辉, 崔恒星, 崔继强, 等. 江西黄山铌(钽)矿床中铌钽矿物的矿物学特征及地质意义[J]. 地质科技情报, 2019, 38(3): 52-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903005.htmCao Z H, Cui H X, Cui J Q, et al. Mineralogy and geological significance of niobium and tantalum minerals in the Huangshan niobium (tantalum) deposit, Jiangxi Province, South China[J]. Geological Science and Technology Information, 2019, 38(3): 52-62 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903005.htm [29] 冉子龙, 李艳军. 伟晶岩型稀有金属矿床成矿作用研究进展[J]. 地质科技通报, 2021, 40(2): 13-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202102003.htmRan Z L, Li Y J. Research advances on rare metal pegmatite deposits[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 13-23 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202102003.htm [30] 宋公社, 许锋, 王明志, 等. 陕西丹凤地区资峪沟伟晶岩铷矿赋存状态[J]. 现代矿业, 2015, 31(10): 106-109. doi: 10.3969/j.issn.1674-6082.2015.10.033Song G S, Xu F, Wang M Z, et al. Occurrence state of Ziyugou pegmatite rubidium mine in Danfeng area, Shaanxi Province[J]. Modern Mining, 2015, 31(10): 106-109 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-6082.2015.10.033 [31] 杨文博, 周海, 宋公社, 等. 陕西商丹地区花岗伟晶岩型稀有金属矿产成矿规律初探[J]. 有色金属: 矿山部分, 2019, 71(1): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU201901014.htmYang W B, Zhou H, Song G S, et al. A preliminary study on the metallogenic regularity of rare metal mineral resources of granitic pegmatite type in Shangdan area, Shaanxi Province[J]. Nonferrous Metals: Mine Section, 2019, 71(1): 64-71 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU201901014.htm [32] 宋公社, 杨文博, 许锋, 等. 东秦岭宽坪花岗岩体及其附近含铷伟晶岩的成矿机理[J]. 现代矿业, 2018, 34(11): 29-34. doi: 10.3969/j.issn.1674-6082.2018.11.007Song G S, Yang W B, Xu F, et al. Metallogenic mechanism of Kuanping granite and its nearby pegmatites containing rubidium in eastern Qinling Mountains[J]. Modern Mining, 2018, 34(11): 29-34 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-6082.2018.11.007 [33] Dong Y, Zhang G, Neubauer F, et al. Tectonic evolution of the Qinling Orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41(3): 213-237. doi: 10.1016/j.jseaes.2011.03.002 [34] Wu Y B, Zheng Y F. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23(4): 1402-1428. doi: 10.1016/j.gr.2012.09.007 [35] 韩芳林, 张拴厚, 王根宝, 等. 陕西省区域地质志[M]. 北京: 地质出版社, 2013.Han F L, Zhang S H, Wang G B, et al. Regional geology of Shaanxi Province[M]. Beijing: Geological Publishing House, 2013(in Chinese). [36] Mattauer M, Matte P, Malavieille J, et al. Tectonics of the Qinling belt: Build-up and evolution of eastern Asia[J]. Nature, 1985, 317: 496-500. doi: 10.1038/317496a0 [37] Ratschbacher L, Hacker B R, Calvert A, et al. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history[J]. Tectonophysics, 2003, 366(1/2): 1-53. [38] 裴先治, 李厚民, 李国光. 东秦岭丹凤岩群的形成时代和构造属性[J]. 岩石矿物学杂志, 2001, 20(2): 180-188. doi: 10.3969/j.issn.1000-6524.2001.02.010Pei X Z, Li H M, Li G G. A study of formation epoch and tectonic attribute of the Danfeng Group complex in east Qinling Mountains[J]. Acta Petrologica et Mineralogica, 2001, 20(2): 180-188 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2001.02.010 [39] Xue F, Kröner A, Reischmann T, et al. Palaeozoic pre- and post-collision calc-alkaline magmatism in the Qinling orogenic belt, central China, as documented by zircon ages on granitoid rocks[J]. Journal of the Geological Society, 1996, 153(3): 409-417. doi: 10.1144/gsjgs.153.3.0409 [40] Liu B X, Qi Y, Wang W, et al. Zircon U-Pb ages and O-Nd isotopic composition of basement rocks in the North Qinling Terrain, central China: Evidence for provenance and evolution[J]. International Journal of Earth Sciences, 2013, 102(8): 2153-2173. doi: 10.1007/s00531-013-0912-6 [41] 王江波, 赖绍聪, 李卫红, 等. 北秦岭东段宽坪岩体地质地球化学特征及其与铀成矿关系[J]. 地质与勘探, 2015, 51(1): 98-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201501011.htmWang J B, Lai S C, Li W H, et al. Geological and geochemical characteristics of the Kuanping granite in the eastern section of north Qinling and their relationship with uranium mineralization[J]. Geology and Exploration, 2015, 51(1): 98-107 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201501011.htm [42] 张宗清, 张国伟, 刘敦一, 等. 秦岭造山带蛇绿岩、花岗岩和碎屑沉积岩同位素年代学和地球化学[M]. 北京: 地质出版社, 2006.Zhang Z Q, Zhang G W, Liu D Y, et al. Isotopic geochronology and geochemistry of ophiolites, granites and clastic sedimentary rocks in the Qinling Orogenic Belt[M]. Beijing: Geological Publishing House, 2006(in Chinese). [43] 王江波, 秦江锋, 胡鹏, 等. 北秦岭早古生代宽坪岩体两期花岗质岩浆锆石U-Pb年代学、地球化学及其地质意义[J]. 地质论评, 2018, 64(1): 127-140. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201801013.htmWang J B, Qin J F, Hu P, et al. Zircon U-Pb ages and geochemical characteristics of the two-stage granitic magamtism from the Kuanping pluton in the northern Qinling Mountains: Petrogenesis and tectonic implication[J]. Geological Review, 2018, 64(1): 127-140 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201801013.htm [44] 张成立, 张国伟, 卢欣祥. 东秦岭宽坪花岗岩体特征及其成因[J]. 西北地质, 1994, 15(1): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XBFK401.004.htmZhang C L, Zhang G W, Lu X X. Characteristics and origin of Kuanping granite body in the east Qinling[J]. Northwestern Geology, 1994, 15(1): 27-34 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBFK401.004.htm [45] 史长义, 鄢明才, 刘崇民, 等. 中国花岗岩类化学元素丰度及特征[J]. 地球化学, 2005, 34(5): 470-482. doi: 10.3321/j.issn:0379-1726.2005.05.005Shi C Y, Yan M C, Liu C M, et al. Abundances of chemical elements in granitoids of China and their characteristics[J]. Geochimica, 2005, 34(5): 470-482 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2005.05.005 [46] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224. [47] Shand S J. Eruptive rocks: Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite[M]. New York: John Wiley & Sons, 1943: 230-235. [48] Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5 [49] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [50] Dostal J, Chatterjee A K. Origin of topaz-bearing and related peraluminous granites of the Late Devonian Davis Lake pluton, Nova Scotia, Canada: Crystal versus fluid fractionation[J]. Chemical Geology, 1995, 123(1/4): 67-88. [51] 张恩世, 张文淮, 刘伟. 新疆可可托海伟晶岩形成机理的研究[J]. 地球科学: 中国地质大学学报, 1987, 12(4): 381-388. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198704010.htmZhang E S, Zhang W H, Liu W. Formation mechanism of Keketuohai pegmatite, Xinjiang, China[J]. Earth Science: Journal of China University of Geosciences, 1987, 12(4): 381-388 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198704010.htm [52] 朱炳玉. 新疆阿尔泰可可托海稀有金属及宝石伟晶岩[J]. 新疆地质, 1997, 15(2): 97-115. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI199702001.htmZhu B Y. Rare metals and gem minerals-bearing pegmatites in Koktokay of Altay, Xinjiang[J]. Xinjiang Geology, 1997, 15(2): 97-115 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI199702001.htm [53] Rollinson H R. A terrane interpretation of the Archaean Limpopo Belt[J]. Geological Magazine, 1993, 130(6): 755-765. doi: 10.1017/S001675680002313X [54] 祝明明, 邹建林, 王闯, 等. 幕阜山地区断峰山铌钽矿的矿物学、年代学和赋存状态[J]. 地质科技通报, 2021, 40(6): 55-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202106007.htmZhu M M, Zou J L, Wang C, et al. Mineralogy, geochronology and occurrence state of the Duanfengshan Nb-Ta deposit in Mufushan area[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 55-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202106007.htm