Failure experiment of soft-hard interlayer bedding rock slope
-
摘要: 软硬互层结构的顺层岩质边坡破坏类型复杂、难于防治, 针对此类边坡地质灾害易发、多发的问题, 从坡面角度、岩层倾向及组合形式、节理分布等方面进行了研究。边坡物理模型试验是揭示边坡变形破坏机理的重要手段, 基于相似理论, 以重庆市万州区孙家滑坡为工程依托, 根据滑坡区地质勘探报告设计了室内边坡物理模型试验; 试验通过顶升模型箱模拟重力加载来探究顺层岩质边坡发生破坏时, 前缘坡角和软弱夹层倾角之间的关系; 结合有限元分析软件Plaxis 2D对物理模型进行了多组数值模拟试验, 以验证软硬互层顺层岩质边坡破坏机制。试验结果表明: 对于顺层岩质边坡, 当软弱夹层的倾角在22°左右, 前缘开挖坡角58°左右时, 顺层岩质边坡容易发生滑动, 滑动面为后缘节理面和软弱夹层的贯通面。因此, 顺层岩质边坡稳定性受层面和节理面密度的控制, 当边坡含多层软弱层面时, 易沿层面和后缘节理贯通面发生破坏, 随着软弱面层数增加, 边坡稳定系数逐渐降低。研究成果可以为公路开挖切坡导致的顺层岩质边坡失稳机理研究及其稳定性评价提供理论依据, 为顺层岩质边坡失稳的预测预报提供支撑。Abstract: Bedding rock slopes with soft-hard interlayers have complicated failure types and are difficult to prevent. In view of the prone and frequent occurrence of such slope geological disasters, research is carried out from the aspects of slope angle, rock formation tendency and combination form, and joint distribution.Slope physical model testing is an important means to reveal the mechanism of slope deformation and failure.Based on similarity theory, this paper takes the Sunjia landslide in Wanzhou District, Chongqing City, as the engineering support and designs the indoor slope physical model test according to the geological exploration report of the landslide area.The test simulates gravity loading through a jack-up model box and explores the relationship between the front slope angle and the weak interlayer inclination when the bedding rock slope slope is damaged.Combined with the finite element analysis software Plaxis 2D, multiple sets of numerical simulation tests were performed on the physical model to verify the failure mechanism of bedding rock slopes with soft-hard interlayers. The results show that for a bedding rock slope, when the inclination angle of the weak interlayer is approximately 22°, the leading edge excavation slope angle is about 58°, the bedding rock slope is prone to sliding, and the sliding surface is the joint surface of the trailing edge and the weak interlayer. Through the surface.Therefore, the stability of a bedding rock slope is controlled by the density of the layer and the joint surface. When the slope contains multiple weak layers, it is easy to break along the layer and the back edge of the joint. As the number of weak surfaces increases, the slope stability coefficient gradually decreases.The research results can provide a theoretical basis for the instability mechanism and stability evaluation of bedding rock slopes caused by road excavation and slope cutting, and provide support for the prediction of the bedding rock slope instability.
-
表 1 开挖前后边坡稳定系数变化
Table 1. Variation in the slope stability coefficient before and after excavation
工况 稳定系数Fs 开挖前 4.04 开挖后 含1层软弱层面 1.024 含2层软弱层面 1.020 含3层软弱层面 1.007 -
[1] 白云峰. 顺层岩质边坡稳定性及工程设计研究[D]. 成都: 西南交通大学, 2005.Bai Y F. Study on stability and designing of consequent bedding rock cut slope[D]. Chengdu: Southwest Jiaotong University, 2005(in Chinese with English abstract). [2] 冯君. 顺层岩质边坡开挖稳定性及其支护措施研究[D]. 成都: 西南交通大学, 2005.Feng J. Study on stability and support of consequent bedding rock slope[D]. Chengdu: Southwest Jiaotong University, 2005(in Chinese with English abstract). [3] 黄润秋. 岩石工程高边坡稳定性研究的某些理论与实践问题探讨[C]//岩土工程青年专家术论坛文集. 北京: 中国建筑工业出版社, 1998: 318-328.Huang R Q. Some advances of high rock slope stability analysis in China[C]//Proceedings of geotechnical engineering young experts Forum. Beijing: China Architecture & Building Press, 1998: 318-328(in Chinese). [4] 孟刚, 余志雄. 顺层岩质边坡稳定性影响因素分析[J]. 岩土力学, 2005, 26(增刊2): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2005S2014.htmMeng G, Yu Z X. Study of influential factors on stability of bedding rock slopes[J]. Rock and Soil Mechanics, 2005, 26(S2): 52-56(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2005S2014.htm [5] 李安洪, 周德培, 冯君. 顺层岩质路堑边坡破坏模式及设计对策[J]. 岩石力学与工程学报, 2009, 28(增刊1): 2915-2921. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1050.htmLi A H, Zhou D P, Feng J. Failure modes of bedding rock cutting slope and design countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 2915-2921(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1050.htm [6] 朱冬雪, 许强, 李松林. 三峡库区大型-特大型层状岩质滑坡成因模式及地质特征分析[J]. 地质科技通报, 2020, 39(2): 158-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002019.htmZhu D X, Xu Q, Li S L. Genetic types and geological features of large scale and extra-large scale layered landslides in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technolgy, 2020, 39(2): 158-167(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002019.htm [7] 董金玉, 杨继红, 伍法权, 等. 三峡库区软硬互层近水平地层高切坡崩塌研究[J]. 岩土力学, 2010, 31(1): 151-157. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201001028.htmDong J Y, Yang J H, Wu F Q, et al. Research on collapse of high cutting slope with horizontal soft-hard alternant strata in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 2010, 31(1): 151-157(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201001028.htm [8] Jian W X, Xu Q, Yang H F, et al. Mechanism and failure process of Qianjiangping landslide in the Three Gorges Reservoir, China[J]. Environmental Earth Sciences, 2014, 72(8): 2999-3013. doi: 10.1007/s12665-014-3205-x [9] 宋娅芬, 陈从新, 郑允, 等. 缓倾软硬岩互层边坡变形破坏机制模型试验研究[J]. 岩土力学, 2015, 36(2): 487-494. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201502029.htmSong Y F, Chen C X, Zheng Y, et al. Model experimental study of deformation and failure mechanism of low-angled slopes with interbedding of soft and hard rocks[J]. Rock and Soil Mechanics, 2015, 36(2): 487-494(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201502029.htm [10] Kedir M, Yoseph B, Ramish K V, et al. Cut soil slope stability analysis along National Highway at Wozeka-Gidole Road, Ethiopia[J]. Modeling Earth Systems and Environment, 2018, 4(2): 591-600. doi: 10.1007/s40808-018-0465-6 [11] 黄少平, 晏鄂川, 尹晓萌, 等. 不同临空条件的层状反倾岩质边坡倾倒变形几何特征参数影响规律[J]. 地质科技通报, 2021, 40(1): 159-165. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202101017.htmHuang S P, Yan E C, Yin X M, et al. Action law of geometrical characteristic parameters in the anti-diprock slopes under different free face condition[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 159-165(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202101017.htm [12] 陈冲, 侯克鹏, 肖慧, 等. 不同倾角顺层岩质边坡失稳机制的相似模型试验[J]. 中国钨业, 2015, 30(5): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWU201505003.htmChen C, Hou K P, Xiao H, et al. Similar model test of slope instability mechanism on different-angled bedding rock[J]. China Tungsten Industry, 2015, 30(5): 17-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWU201505003.htm [13] Wang Z D, Jiang L M, Xia Y Y. Numerical analysis of stratified rock slope stability based on 3DEC[J]. Applied Mechanics and Materials, 2014, 454: 133-139. https://www.scientific.net/AMM.454.133 [14] Xia K W, Mohammadamin J, Patrick P, et al. Constitutive modelling of soils under high strain rates[R]. Toronto: University of Toronto, 2015. [15] 杨忠平, 刘树林, 刘永权, 等. 反复微震作用下顺层及反倾岩质边坡的动力稳定性分析[J]. 岩土工程学报, 2018, 40(7): 1277-1286. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807018.htmYang Z P, Liu S L, Liu Y Q, et al. Dynamic stability analysis of bedding and toppling rock slopes under repeated micro-seismic action[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1277-1286(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807018.htm [16] 王飞, 唐辉明, 宁奕冰, 等. 基于演化过程的互层斜坡深层倾倒稳定性评价[J]. 地质科技情报, 2019, 38(5): 186-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905020.htmWang F, Tang H M, Ning Y B, et al. Stability analysis of deep-seated toppling in interlayered rock slopes based on evolution process[J]. Geological Science and Technology Information, 2019, 38(5): 186-194(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905020.htm [17] 丁戈媛, 胡新丽. 大奔流顺层岩质滑坡溃屈型破坏力学机制研究[J]. 地质科技通报, 2020, 39(2): 186-190. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002022.htmDing G Y, Hu X L. Mechanical mechanism of buckling failure of Dabenliu consequent bedding rockslide[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 186-190(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002022.htm [18] 王佳佳. 三峡库区万州区滑坡灾害风险评估研究[D]. 武汉: 中国地质大学(武汉), 2015.Wang J J. Landslide rik assessment in Wanzhou County, Three Gorges Reservoir[D]. Wuhan: China University of Geosciences(Wuhan), 2015(in Chinese with English abstract). [19] 吴凯峰, 郑志勇, 余海兵. 基于应变软化特征的含软弱层公路边坡稳定性研究[J]. 地质科技情报, 2019, 38(6): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906018.htmWu K F, Zheng Z Y, Yu H B. Stability evaluation of highway slope with soft layer based on strain softening characteristics[J]. Geological Science and Technology Information, 2019, 38(6): 150-156(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906018.htm [20] 左保成, 陈从新, 刘小巍, 等. 反倾岩质边坡破坏机理模型试验研究[J]. 岩石力学与工程学报, 2005, 24(19): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200519016.htmZuo B C, Chen C X, Liu X W, et al. Modeling experiment study on falure mechanism of counter-tilt rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19): 107-113(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200519016.htm [21] 仵锋锋, 曹平, 万琳辉. 相似理论及其在模拟试验中的应用[J]. 采矿技术, 2007, 7(4): 64-65, 78. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCK200704028.htmWu F F, Cao P, Wan L H. Similarity theory and its application in simulation test[J]. Mining Technology, 2007, 7(4): 64-65, 78(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SJCK200704028.htm [22] 肖杰. 相似材料模型试验原料选择及配比试验研究[D]. 北京: 北京交通大学, 2013.Xiao J. Selection of similar materials for model test & research on similar material proportioning test[D]. Beijing: Beijing Jiaotong University, 2013(in Chinese with English abstract). [23] 刘刚, 赵坚, 宋宏伟, 等. 节理密度对围岩变形及破坏影响的试验研究[J]. 岩土工程学报, 2007, 29(11): 1737-1741. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200711025.htmLiu G, Zhao J, Song H W, et al. Physical modelling of effect ofjoint density on deformation and failure of surrounding rocks[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1737-1741(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200711025.htm [24] 刘新荣, 邓志云, 刘永权, 等. 地震作用下水平层状岩质边坡累积损伤与破坏模式研究[J]. 岩土力学, 2019, 40(7): 2507-2516. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907005.htmLiu X R, Deng Z Y, Liu Y Q, et al. Study of cumulative damage and failure mode of horizontal layered rock slope subjected to seismic loads[J]. Rock and Soil Mechanics, 2019, 40(7): 2507-2516(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907005.htm [25] 张璟, 陈文胜, 蒋茂林, 等. 厚顺层岩质边坡稳定性的模型试验研究及数值验证[J]. 北方交通, 2020, 10(10): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-LNJT202010010.htmZhang J, Chen W S, Jiang M L, et al. Model test study and numerical verification on stability of bedding rock slope with equal thickness[J]. Northern Communications, 2020, 10(10): 40-44(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-LNJT202010010.htm [26] 宁奕冰, 唐辉明, 张勃成, 等. 基于正交设计的岩石相似材料配比研究及底摩擦物理模型试验应用[J]. 岩土力学, 2020, 41(6): 2009-2020. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006025.htmNing Y B, Tang H M, Zhang B C, et al. Investigation of the rock similar material proportion based on orthogonal design and its application in base friction physical model tests[J]. Rock and Soil Mechanics, 2020, 41(6): 2009-2020(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006025.htm [27] 重庆市地质矿产勘查开发局南江水文地质工程地质队. 万州区孙家镇荆竹屋基滑坡应急勘查报告[R]. 重庆: 重庆市地质矿产勘查开发局南江水文地质工程地质队, 2013.Nanjiang Hydrogeological Engineering Geological Team of Chongqing Bureau of Geology and Mineral Exploration and Development. Emergency investigation report of Jingzhuwuji landslide in Sunjia Town, Wanzhou District[R]. Chongqing: Nanjiang Hydrogeological Engineering Geological Team of Chongqing Bureau of Geology and Mineral Exploration and Development, 2013(in Chinese). [28] 周春梅. 三峡库区万州区滑坡抗滑桩设计研究[D]. 武汉: 中国地质大学(武汉), 2007.Zhou C M. Research on the design of anti-slide pile in Wanzhou City of Three Gorges area[D]. Wuahn: China University of Geosciences(Wuhan), 2007(in Chinese with English abstract).