留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大足石刻宝顶山砂岩毛细水迁移特性影响因素

宋佳航 严绍军 项伟 刘建辉 赵岗 蒋思维

宋佳航, 严绍军, 项伟, 刘建辉, 赵岗, 蒋思维. 大足石刻宝顶山砂岩毛细水迁移特性影响因素[J]. 地质科技通报, 2022, 41(4): 282-291. doi: 10.19509/j.cnki.dzkq.2021.0099
引用本文: 宋佳航, 严绍军, 项伟, 刘建辉, 赵岗, 蒋思维. 大足石刻宝顶山砂岩毛细水迁移特性影响因素[J]. 地质科技通报, 2022, 41(4): 282-291. doi: 10.19509/j.cnki.dzkq.2021.0099
Song Jiahang, Yan Shaojun, Xiang Wei, Liu Jianhui, Zhao Gang, Jiang Siwei. Influencing factors of capillary water migration characteristics of the sandstones in Baoding Mountain, Dazu Stone Carvings[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 282-291. doi: 10.19509/j.cnki.dzkq.2021.0099
Citation: Song Jiahang, Yan Shaojun, Xiang Wei, Liu Jianhui, Zhao Gang, Jiang Siwei. Influencing factors of capillary water migration characteristics of the sandstones in Baoding Mountain, Dazu Stone Carvings[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 282-291. doi: 10.19509/j.cnki.dzkq.2021.0099

大足石刻宝顶山砂岩毛细水迁移特性影响因素

doi: 10.19509/j.cnki.dzkq.2021.0099
详细信息
    作者简介:

    宋佳航(1990-), 女, 现正攻读地质工程专业博士学位, 主要从事岩土文物保护的研究工作。E-mail: songjh09@outlook.com

    通讯作者:

    严绍军(1973-), 男, 副教授, 主要从事文物本体特性、岩土文物风化机理、保护材料、保护工程勘察设计、岩土文物三维模型建立与力学分析、水害盐害治理等文物保护科技研究。E-mail: yansj@cug.edu.cn

  • 中图分类号: P642

Influencing factors of capillary water migration characteristics of the sandstones in Baoding Mountain, Dazu Stone Carvings

  • 摘要:

    重庆大足宝顶山大佛湾石刻存在严重的毛细水害及毛细水带来的盐害、生物等衍生病害, 对该世界文化遗产的保护带来了长期负面作用。在对大佛湾进行现场调查的基础上, 将造像摩崖砂岩划分为3套地层: 卧佛上层砂岩、卧佛砂岩及卧佛下层砂岩。采用薄片鉴定、X射线衍射、化学成分测试、扫描电镜、压汞试验、卡斯特瓶法等方法, 分析了宝顶山砂岩的自身特性以及温湿度对毛细不水的影响。研究结果表明: 相对于卧佛上下层砂岩, 卧佛本体砂岩的成熟度最低, 孔隙率与孔隙的分布范围均最大, 为毛细水的迁移提供了相对好的条件; 卧佛本体砂岩毛细吸水能力及上升高度均为最好。同时, 毛细水的上升与环境温湿度、空气流通性密切相关; 在大足石刻的致密砂岩中, 大量的贯通性微小孔隙在毛细水迁移中并不能发挥作用, 卧佛本体砂岩有效孔隙直径应该在1 133.0 nm以上, 极端情况下可能达到760.2 nm。研究结果为准确认识大足石刻毛细水形成与演化提供了可靠的数据, 解释了大足石刻冬季盐害的形成机理, 对大足石刻毛细水治理提供了理论依据。

     

  • 图 1  卧佛主要病害图

    Figure 1.  Main damages of the sleeping Buddha

    图 2  重庆市大足区宝顶山区位图

    Figure 2.  Location map of the Dazu district, Baoding Mountain area in Chongqing

    图 3  宝顶山地质图

    Figure 3.  Geological map of the Baoding Mountain area

    图 4  宝顶山砂岩地层典型剖面

    Figure 4.  Typical strata profile of the Baoding Mountain area

    图 5  3套砂岩薄片鉴定照片

    a.卧佛上砂岩正交偏光; b.卧佛上砂岩单偏光; c.卧佛砂岩正交偏光; d.卧佛砂岩单偏光; e.卧佛下砂岩正交偏光; f.卧佛下砂岩单偏光

    Figure 5.  Sandstone slice images of the three sets of layers

    图 6  宝顶山砂岩XRD曲线图

    Figure 6.  X-ray diffraction curves of the sandstones in the Baoding Mountain area

    图 7  宝顶山砂岩电镜扫描成果

    a.卧佛上砂岩; b.卧佛砂岩; c.卧佛下砂岩; d.砂岩颗粒间绿脱石、伊利石混层

    Figure 7.  Scanning electron microscopy images of the sandstones in the Baoding Mountain area

    图 8  宝顶山砂岩孔隙分布累积曲线

    Figure 8.  Accumulation curves of the pore distribution of the sandstones in the Baoding Mountain area

    图 9  卡斯特瓶测试岩石表面毛细吸水性

    Figure 9.  Surface capillary absorption tested by the Karsten tube

    图 10  宝顶山砂岩表面毛细吸水曲线

    Figure 10.  Absorption curves of capillary water on the surfaces of sandstones in the Baoding Mountain area

    图 11  宝顶山砂岩表面吸水系数结果柱状图

    Figure 11.  Histogram of the surface capillary absorption coefficients for sandstones in the Baoding Mountain area

    图 12  毛细水上升高度与浸水时间关系曲线

    Figure 12.  Relationship curves between the capillary water rising height and the time

    图 13  毛细水上升高度与自然吸水得到孔隙率关系

    Figure 13.  Relationship between the capillary water rising height and porosity calculated by the natural absorption water amount

    图 14  毛细水上升高度与环境温度关系

    Figure 14.  Relationship between capillary water rising height and environmental temperature

    图 15  毛细水上升高度与环境湿度关系

    Figure 15.  Relationship between capillary water rise height and environmental relative humidity

    图 16  封闭与开放环境下毛细水上升高度测试

    Figure 16.  Test of the capillary water rising height in sealed and ventilated environments

    图 17  宝顶山砂岩压汞孔隙率分布柱状图

    Figure 17.  Porosity histogram of the sandstones in the Baoding Mountain area tested by the mercury intrusion method

    表  1  薄片鉴定结果表

    Table  1.   Results of thin section identification

    地层 石英 长石 硅质碎屑 钙镁质 黏土矿物与其他 砾状砂粒径范围/mm
    φB/%
    卧佛上砂岩 42 23 10 16 9 0.05~0.15
    卧佛砂岩 47 22 15 5 11 0.05~0.15
    卧佛下砂岩 55 20 5 8 12 0.05~0.10
    下载: 导出CSV

    表  2  砂岩矿物组成表

    Table  2.   Mineral component table of the sandstones

    地层 矿物
    卧佛上砂岩 石英、斜长石、方解石、绿脱石、伊利石、铝绿泥石、正长石、钠云母
    卧佛砂岩 石英、斜长石、方解石、绿脱石、绿泥石、石膏、微斜长石、云母
    卧佛下砂岩 石英、斜长石、方解石、绿脱石、伊利石、斜绿泥石、绿泥石、榍石
    下载: 导出CSV

    表  3  宝顶山砂岩化学成分测试结果

    Table  3.   Results of the chemical composition test of sandstones in the Baoding Mountain area

    成分 卧佛上层 卧佛层 卧佛下层
    SiO2 52.13 56.22 59.91
    Al2O3 11.97 13.16 10.57
    TFe2O3 3.11 3.01 2.95
    MgO 2.65 2.50 1.96
    CaO 11.67 8.05 9.44
    Na2O 2.64 2.95 2.21
    K2O wB/% 1.68 2.06 2.01
    TiO2 0.74 0.66 0.54
    P2O5 0.19 0.17 0.14
    MnO 0.15 0.096 0.11
    H2O- 0.80 1.00 0.66
    烧失量 12.18 9.40 9.72
    下载: 导出CSV

    表  4  宝顶山砂岩理论计算孔隙率与不同测试方法得到孔隙率比较表

    Table  4.   Comparison of the calculated porosity and different test method results of the sandstones in the Baoding Mountain area

    地层 编号 干密度/(kg·m-3) 颗粒相对密度 理论孔隙率/% 压汞试验孔隙率/% 开孔率/% 天然饱和孔隙率/% 真空饱和孔隙率/%
    孔隙率 平均
    卧佛上砂岩 1-A 2 318.2 2.643 12.29 13.98 13.29 95.06 6.14 9.97
    1-B 2 273.4 2.655 14.37
    1-C 2 242.0 2.646 15.27
    卧佛砂岩 2-A 2 215.4 2.661 16.74 17.41 17.39 99.90 10.95 11.87
    2-B 2 179.6 2.658 18.00
    2-C 2 192.5 2.657 17.48
    卧佛下砂岩 3-A 2 473.3 2.701 8.43 7.98 7.95 99.55 3.60 4.77
    3-B 2 466.7 2.681 7.99
    3-C 2 470.9 2.672 7.53
    下载: 导出CSV

    表  5  空气流通条件对毛细水上升高度的影响结果

    Table  5.   Results of the capillary water rising height influenced by the air circulation condition  h/cm

    环境条件 卧佛上砂岩 卧佛砂岩 卧佛下砂岩
    封闭环境 4.5 10 3.5
    气流循环 2.4 5 2.2
    下载: 导出CSV

    表  6  极端温湿度环境条件下宝顶山砂岩毛细水上升高度

    Table  6.   Capillary water rising heights of the sandstones in the Baoding Mountain area under extreme temperature and relative humidity conditions  h/cm

    环境条件 温度影响/℃ 湿度影响/%
    5 40 40 >95
    卧佛上砂岩 3.72 2.33 2.57 3.77
    卧佛砂岩 7.40 3.73 4.43 5.93
    卧佛下砂岩 2.85 2.32 2.15 2.98
    下载: 导出CSV
  • [1] World Heritage Centre. Dazu rock carvings[EB/OL]//Anon. World Heritage List. United nations educational, scientific and cultural organization. (1999-12-1). http://whc.unesco.org/en/list/912/
    [2] 樊锦诗. 基于世界文化遗产价值的世界文化遗产地的管理与监测: 以敦煌莫高窟为例[J]. 敦煌研究, 2008, 28(6): 1-5, 114. doi: 10.3969/j.issn.1000-4106.2008.06.001

    Fan J S. The management and the monitoring system for the nature of the world cultural heritage site[J]. Dunhuang Research, 2008, 28(6): 1-5, 114 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-4106.2008.06.001
    [3] 唐长清, 姚淇琳. 宝顶山大佛湾石窟明清修缮史料的整理[J]. 石窟寺研究, 2019(1): 237-248.

    Tang C Q, Yao Q L. A brief study and organization of historical records about repairing the Dafowan Cave Temples on Baoding Mountain[J]. Studies of the Cave Temples, 2019(1): 237-248 (in Chinese with English abstract).
    [4] 陈卉丽, 蒋思维, 席周宽. 大足石刻的气象环境特征[J]. 华夏考古, 2004, 18(1): 55-59. doi: 10.3969/j.issn.1001-9928.2004.01.007

    Chen H L, Jiang S W, Xi Z K. The characters of weather and environment of Dazu Stonesculptures[J]. Huaxia Archaeology, 2004, 18(1): 55-59 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-9928.2004.01.007
    [5] Li Z, Wang L, Chen H, et al. Degradation of emerald green: Scientific studies on multi-polychrome Vairocana Statue in Dazu Rock Carvings, Chongqing, China[J]. Heritage Science, 2020, 8: 64-76. doi: 10.1186/s40494-020-00410-2
    [6] Gao F, Zhou X, Zhou H, et al. Characterization and analysis of sandstone substrate, mortar layers, gold foils, and paintings of the Avalokitesvara Statues in Dazu County (China)[J]. Journal of Cultural Heritage, 2016, 21: 881-888. doi: 10.1016/j.culher.2016.03.009
    [7] Wang H, He Z, Huang Y, et al. Bodhisattva head images modeling style recognition of Dazu Rock Carvings based on deep convolutional network[J]. Journal of Cultural Heritage, 2017, 27: 60-71. doi: 10.1016/j.culher.2017.03.006
    [8] 侯能. 纳米SiO2在大足石刻石质文物加固中的应用研究[D]. 重庆: 重庆师范大学, 2017.

    Hou N. The application of nanosilion dioxide in Dazu Grottoes stone relics reinforcement research[D]. Chongqing: Chongqing Normal University, 2017 (in Chinese with English abstract).
    [9] 冯太彬, 范子龙. 大足石刻彩绘信徒像保护修复技术[J]. 石窟寺研究, 2014, 5(1): 419-429.

    Feng T B, Fan Z L. The techniques of conservation and restoration of apolychrome stone statue of doner in Dazu Rock Carving[J]. Studies of the Cave Temples, 2014, 5(1): 419-429 (in Chinese with English abstract).
    [10] 张兵峰, 蒋思维. 重庆大足石刻大佛湾渗水病害初探[J]. 中国文物科学研究, 2016, 11(1): 68-71. doi: 10.3969/j.issn.1674-9677.2016.01.018

    Zhang B F, Jiang S W. Preliminary exploration of water seepage disease on Big Buddha Bay of Dazu rock carving[J]. China Cultural Heritage Scientific Research, 2016, 11(1): 68-71 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-9677.2016.01.018
    [11] 岳建伟, 林健, 王永锋, 等. 开封仿遗址土水理性质的改良研究[J]. 工程科学与技术, 2020, 52(1): 46-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202001006.htm

    Yue J W, Lin J, Wang Y F, et al. Study on the improvement of soil water in Kaifeng Imitation Site[J]. Advanced Engineering Sciences, 2020, 52(1): 46-55 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202001006.htm
    [12] 杨强义, 李承蔚. 毛细水干湿循环对土遗址风化影响的试验研究[J]. 地下空间与工程学报, 2012, 8(3): 517-525. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201203015.htm
    [13] 王夏伟. 毛细水对开封城墙的破坏研究[D]. 开封: 河南大学, 2020.

    Wang X W. Study on damage of capillary water to Kaifeng City Wall[D]. Kaifeng: Henan University, 2020 (in Chinese with English abstract).
    [14] 申静怡, 刘成. 东莞地区红砂岩文化遗存病害机理研究[J]. 文物保护与考古科学, 2012, 24(2): 31-37. doi: 10.3969/j.issn.1005-1538.2012.02.007

    Shen J Y, Liu C. Research on deterioration mechanism of the red sandstone cultural relics in Dongguan[J]. Sciences of Conservation and Archaeology, 2012, 24(2): 31-37 (in Chinese with English abstract). doi: 10.3969/j.issn.1005-1538.2012.02.007
    [15] 任克彬, 王博, 李新明, 等. 毛细水干湿循环作用下土遗址的强度特性与孔隙分布特征[J]. 岩土力学, 2019, 40(3): 962-970. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903015.htm

    Ren K B, Wang B, Li X M, et al. Strength properties and pore-size distribution of earthen archaeological site under dry-wet cycles of capillary water[J]. Rock and Soil Mechanics, 2019, 40(3): 962-970 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903015.htm
    [16] 王立志, 黄继忠, 任建光, 等. 平遥古城墙毛细水上升控制方法探索性研究[J]. 文物世界, 2016, 30(6): 64-67. doi: 10.3969/j.issn.1009-1092.2016.06.021

    Wang L Z, Huang J Z, Ren J G, et al. Exploratory study on the method of controlling the capillary water rise in the ancient city wall of Pingyao[J]. World of Antiquity, 2016, 30(6): 64-67 (in Chinese). doi: 10.3969/j.issn.1009-1092.2016.06.021
    [17] Wang Y, Pei Q, Yang S, et al. Evaluating the condition of sandstone rock-hewn cave-temple façade using in situ non-invasive techniques[J]. Rock Mechanics and Rock Engineering, 2020, 53(12): 1-6.
    [18] Ruedrich J, Bartelsen T, Dohrmann R, et al. Moisture expansion as a deterioration factor for sandstone used in buildings[J]. Environmental Earth Sciences, 2011, 63(7/8): 1545-1564.
    [19] 汪东云, 张赞勋, 付林森, 等. 宝顶山石窟岩体风化破坏的作用因素分析[J]. 工程地质学报, 1994, 2(2): 54-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ402.006.htm

    Wang D Y, Zhang Z X, Fu L S, et al. Analyses of factors affecting destruction of rockmass by weathering in Baodingshan Grotto[J]. Journal of Engineering Geology, 1994, 2(2): 54-65 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ402.006.htm
    [20] 王金华. 大足石刻保护[M]. 北京: 文物出版社, 2009.

    Wang J H. Dazu grottos conservation[M]. Beijing: Cultural Relics Press, 2009 (in Chinese).
    [21] 马淑芝, 方云, 贾洪彪, 等. 云冈石窟第9、10窟列柱地质病害特征与加固设计[J]. 地质科技情报, 2011, 30(1): 123-126. doi: 10.3969/j.issn.1000-7849.2011.01.022

    Ma S Z, Fang Y, Jia H B, et al. Characters of geological disease and reinforcement design of the 9th and 10th grotto's columniations of Yungang Grottoes[J]. Geological Science and Technology Information, 2011, 30(1): 123-126 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2011.01.022
    [22] 苏天明, 孙强, 张卫强. 砂岩风化及其工程地质效应[J]. 地质科技情报, 2015, 34(1): 204-209. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501032.htm

    Su T M, Sun Q, Zhang W Q. Sandstone weathering and its engineering geological effects[J]. Geological Science and Technology Information, 2015, 34(1): 204-209 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501032.htm
    [23] 王伟, 丁黎, 陈小东, 等. 一种改进的通过压汞来计算致密砂岩渗透率经验方法: 以鄂尔多斯盆地姬塬地区长7致密砂岩为例[J]. 地质科技情报, 2018, 37(4): 153-157. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804021.htm

    Wang W, Ding L, Chen X D, et al. An improved empirical permeability estimator from mercury injection for tight sandstone: A case of Chang 7 tight sandstone in Jiyuan Area of Ordos Basin[J]. Geological Science and Technology Information, 2018, 37(4): 153-157 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804021.htm
    [24] 梁行洲. 大足石刻砂岩材料风化程度量化评估[D]. 兰州: 兰州大学, 2017.

    Liang X Z. Quantitative assessment of weathering degree of sandstone material in Dazu Rock Carvings[D]. Lanzhou: Lanzhou University, 2017 (in Chinese with English abstract).
    [25] European committee for standardization, Conservation of cultural property. Test methods. Determination of water absorption by capillarity: BS EN 15801[S]. London: British Standards Institution, 2009.
    [26] 许利军, 蔡乐刚, 朱开宇, 等. 卡斯滕量瓶法在优秀历史建筑专项检测中应用[J]. 住宅科技, 2013(10): 60-62. doi: 10.3969/j.issn.1002-0454.2013.10.015

    Xu L J, Cai, L G, Zhu K Y, et al. Application of Karsten Tube method in the special inspection of excellent historical buildings[J]. Housing Science, 2013(10): 60-62 (in Chinese with English abstract). doi: 10.3969/j.issn.1002-0454.2013.10.015
    [27] 赵留鹏, 张树永. 毛细上升公式的推导方法及其在方形毛细管中的应用[J]. 大学化学, 2016, 31(11): 83-88. doi: 10.3866/pku.DXHX201604031

    Zhao L P, Zhang S Y. Equation deduction for capillary rise and the application in square capillary[J]. University Chemistry, 2016, 31(11): 83-88 (in Chinese with English abstract). doi: 10.3866/pku.DXHX201604031
    [28] Zhao H, Ding J, Huang Y, et al. Experimental analysis on the relationship between pore structure and capillary water absorption characteristics of cement-based materials[J]. Structural Concrete, 2019, 20(5): 1750-1762. doi: 10.1002/suco.201900184
    [29] Washburn E W. The dynamics of capillary flow[J]. Physical Rev. Diew, 1921, 17(3): 273-283. doi: 10.1103/PhysRev.17.273
    [30] Karagiannis N, Karoglou M, Bakolas A, et al. Effect of temperature on water capillary rise coefficient of building materials[J]. Building and Environment, 2016, 106: 402-408. doi: 10.1016/j.buildenv.2016.07.008
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  424
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-01
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回