Nonlinear solutions of lateral response for piles under axial and lateral load embedded in layered soils
-
摘要: 对于承受轴向荷载的水平受荷桩,以往研究大多基于线弹性或弹塑性水平荷载传递模型。为提升轴横受荷桩的计算设计水平,采用轴向荷载传递法计算桩身轴力,考虑桩身轴力引起的P-Δ效应,基于双曲线型水平荷载传递模型考虑桩-土体系变形的非线性特征,对成层土中轴横受荷桩的水平响应进行分析求解,得到了轴横荷载作用下桩身变形和内力的非线性有限差分解,并采用MATLAB语言编制了计算程序。使用模型试验算例与基于现场试验的有限元算例对非线性解的准确性进行对比验证,结果表明:计算结果与算例数据吻合良好,可靠性较高;采用不同荷载传递模型的计算结果在不同荷载水平下有所差异,在较大荷载水平下桩-土变形的非线性特点不容忽视。Abstract: Most of the previous studies were based on the linearly elastic or linearly elastic-plastic horizontal load transfer model for the laterally loaded piles undergoing axial load.In order to improve the calculation and design accuracy of axially and laterally loaded piles, considering the P-Δ effect caused by axial force of piles using the axial load transfer method, this paper proposes a nonlinear analysis approach based on hyperbola load transfer model to calculate the lateral response of elevated piles embedded in layered soils.The nonlinear finite difference solutions of the deformation and internal force for the pile shaft are obtained, and the relevant computer program is developed by MATLAB software.The accuracy of the nonlinear solutions is verified by utilizing the model test and the finite element calculation based on the field test.The calculation results showed that the results obtained by the nonlinear approach are in good agreement with the model test and finite element data.Besides, the results calculated by the approaches with different load transfer models are compared under different load levels.The nonlinear characteristics of pile-soil deformation cannot be ignored in calculation of lateral pile responses under large load.
-
表 1 现场试验地基土主要物理参数
Table 1. Main physical properties of soils
土层 层厚/m 内摩擦角/(°) 黏聚力/kPa 弹性模量/MPa 泊松比ν 桩 - - - 4.2×104 0.2 回填土 3 12 8 40 0.31 砂土 3 28 13 65 0.33 黏土1 4 14 30 18 0.4 黏土2 17 18 35 26 0.4 风化岩 1 35 28 675 0.25 表 2 各土层理论计算参数
Table 2. Computed parameters of each soil layer
土层 地基反力系数ηh/(MN·m-3) Ng n α0 回填土 35 1.4 1.7 0 砂土 45 1.9 1.7 0 黏土1 15 0.8 0.5 0.2 黏土2 18 1 0.8 0.3 风化岩 100 2.3 1.7 0 -
[1] Liang F, Chen H, Chen S.Influences of axial load on the lateral response of single pile with integral equation method[J].International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(16):1831-1845. doi: 10.1002/nag.1090 [2] 栾鲁宝, 丁选明, 周仕礼, 等.考虑竖向荷载的桩基水平振动响应解析解[J].建筑结构, 2015, 45(19):80-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201519021.htm [3] Ding X, Luan L, Zheng C, et al.Influence of the second-order effect of axial load on lateral dynamic response of a pipe pile in saturated soil layer[J].Soil Dynamics and Earthquake Engineering, 2017, 103:86-94. doi: 10.1016/j.soildyn.2017.09.007 [4] 赵明华.轴向和橫向荷载同时作用下的桩基计算[J].湖南大学学报:自然科学版, 1987, 14(2):68-81. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX198702008.htm [5] 赵明华, 徐卓君, 马缤辉, 等.倾斜荷载下基桩C法的幂级数解[J].湖南大学学报:自然科学版, 2012, 39(3):1-5. doi: 10.3969/j.issn.1674-2974.2012.03.001 [6] 陈林靖, 余其凤, 戴自航.纵横弯曲桩计算的综合刚度和双参数法的有限差分解[J].岩石力学与工程学报, 2016, 35(3):613-622. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603018.htm [7] 张磊, 龚晓南, 俞建霖.考虑土体屈服的纵横荷载单桩变形内力分析[J].岩土力学, 2011, 32(8):2441-2445. doi: 10.3969/j.issn.1000-7598.2011.08.032 [8] 陈鑫, 向先超, 刘凯, 等.小桩距下的抗滑桩后滑坡推力分布规律分析[J].地质科技情报, 2019, 38(6):157-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906019.htm [9] Hsiung Y M, Chen S S, Chou Y C.Analytical solution for piles supporting combined lateral loads[J].Journal of Geotechnical and Geoenvironmental Engineerng, 2006, 132(10):1315-1324. doi: 10.1061/(ASCE)1090-0241(2006)132:10(1315) [10] 竺明星, 龚维明, 何小元, 等.堆载作用下考虑土拱效应的被动桩变形内力半解析解[J].岩土工程学报, 2013, 35(11):1997-2008. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201311007.htm [11] 竺明星, 龚维明, 何小元, 等.纵横向受荷基桩变形内力的矩阵传递解[J].岩土力学, 2014, 35(11):3281-3288. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201411037.htm [12] Kim B T, Kim N K, Lee W J, et al.Experimental load-transfer curves of laterally loaded piles in Nak-Dong River sand[J].Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(4):416-425. doi: 10.1061/(ASCE)1090-0241(2004)130:4(416) [13] Kongner R L.Hyperbolic stress-strain response:Cohesive soils[J].Journal of the Soil Mechanics & Foundations Division, 1963, 89(1):115-143. [14] 王璇, 胡新丽, 周昌, 等.基于物理模型试验的滑坡-抗滑桩位移场变化特征[J].地质科技通报, 2020, 39(4):103-108. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10005.shtml [15] 张乾青, 李连祥, 李术才, 等.成层土中单桩受力性状简化算法[J].岩石力学与工程学报, 2012, 31(增刊1):3390-3394. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1105.htm [16] Kumar S, Lalvani L, Omar M.Nonlinear response of single piles in sand subjected to lateral loads using khmax approach[J].Geotechnical and Geological Engineering, 2006, 24(1):163-181. doi: 10.1007/s10706-004-2760-4 [17] Reese L, Cox W R, Koop F D.Analysis of laterally loaded piles in sand[C]//Proceedings of 6th Offshore Technology Conference.Houston:, 1974: 473-483. [18] 中国建筑科学研究院.JTJ 94-2008建筑桩基技术规范[S].北京: 中国建筑工业出版社, 2008. [19] Guo W D, Lee F H.Load transfer approach for laterally loaded piles[J].International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(11):1101-1129. doi: 10.1002/nag.169 [20] 朱碧堂.土体的极限抗力与侧向受荷桩性状[D].上海: 同济大学, 2005. [21] 张乾青.竖向受荷桩承载特性理论与工程应用[M].北京:中国建筑工业出版社, 2016. [22] 李庆扬.非线性方程组的数值解法[M].北京:科学出版社, 2005. [23] 尤汉强, 杨敏, 孙庆.对侧向受荷桩有限差分解法的改进研究[J].结构工程师, 2009, 25(4):114-118. doi: 10.3969/j.issn.1005-0159.2009.04.020 [24] Sastry V V R N, Meyerhof G G.Behaviour of flexible piles in layered sands under eccentric and Inclined loads[J].Canadian Geotechnical Journal, 1994, 31(4):513-520. doi: 10.1139/t94-060 [25] Ng C W W, Zhang L M, Nip D C N.Closure of "response of laterally loaded large-diameter bored pile groups"[J].Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128:964-965. doi: 10.1061/(ASCE)1090-0241(2002)128:11(964)