留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

江苏滨海平原弱透水层封存的古咸水及其运移过程

李静 张亚年 梁杏 刘彦

李静, 张亚年, 梁杏, 刘彦. 江苏滨海平原弱透水层封存的古咸水及其运移过程[J]. 地质科技通报, 2022, 41(1): 90-98. doi: 10.19509/j.cnki.dzkq.2021.0158
引用本文: 李静, 张亚年, 梁杏, 刘彦. 江苏滨海平原弱透水层封存的古咸水及其运移过程[J]. 地质科技通报, 2022, 41(1): 90-98. doi: 10.19509/j.cnki.dzkq.2021.0158
Li Jing, Zhang Yanian, Liang Xing, Liu Yan. Paleo-salt porewater trapped in the clayey aquitard and its transport processes in Jiangsu coastal plain[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 90-98. doi: 10.19509/j.cnki.dzkq.2021.0158
Citation: Li Jing, Zhang Yanian, Liang Xing, Liu Yan. Paleo-salt porewater trapped in the clayey aquitard and its transport processes in Jiangsu coastal plain[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 90-98. doi: 10.19509/j.cnki.dzkq.2021.0158

江苏滨海平原弱透水层封存的古咸水及其运移过程

doi: 10.19509/j.cnki.dzkq.2021.0158
基金项目: 

国家自然科学基金项目 41977167

国家自然科学基金项目 41502231

江苏省地质勘查基金项目 苏国土资函[2014]842号

详细信息
    作者简介:

    李静(1985-), 女, 副教授, 主要从事水文地质学的教学与科研工作。E-mail: Jinglicug@163.com

  • 中图分类号: P641

Paleo-salt porewater trapped in the clayey aquitard and its transport processes in Jiangsu coastal plain

  • 摘要: 滨海平原弱透水层广布且多赋存古咸水,其盐度分布及运移过程深刻影响着含水层地下水的演变,却得到甚少关注。采集了江苏滨海区7个浅层钻孔弱透水层原状样品,压榨法收集孔隙水。利用孔隙水天然示踪剂ρ(Cl-),ρ(Br-)剖面和数值模拟分析了弱透水层孔隙水盐度特征和运移机制。得出浅层孔隙水ρ(Cl-)垂向剖面存在2个趋势:①峰值在表层,沿深度逐渐下降;②峰值在深度25m左右,向两端浓度降低。孔隙水ρ(Cl-)为486.2~38 036.7 mg/L,Cl/Br比值为72~360(均值241)。ρ(Cl-)与Cl/Br比值关系及剖面分布说明孔隙咸水为海相成因,来自于全新世海侵时期的古海水,并受到后期淡水的稀释。弱透水层孔隙水一维垂向运移数值模型表明海侵-海退事件控制了海岸带弱透水层孔隙水的盐度演变,全新世古海水仍封存在沉积物中,更新世时期的海水已被驱替。孔隙水运移以扩散为主,垂向运移速率为0.43~15.8 mm/Ma。在相对高渗透性的粉砂地层中,可能还受到侧向对流的影响。弱透水层中古海咸水的重新分布,尤其在地下水超采条件下,可能成为地下水的重要咸化来源。

     

  • 图 1  研究区地理位置(a)与江苏滨海钻孔位置(b)(海岸线的演变参考文献[26])

    Figure 1.  Location of the study area (a) and the borehole location in the Jiangsu coastal area (b)

    图 2  研究钻孔的岩性柱状图

    Figure 2.  Lithological column of the studied boreholes

    图 3  理论模型中海相弱透水层孔隙水垂向运移过程

    a.弱透水层厚度10 m; b.弱透水层厚度20 m; c.不同厚度弱透水层中点孔隙水浓度的时间变化

    Figure 3.  Vertical transport process of porewater in marine aquitard in a theoretical model

    图 4  中国东部滨海区弱透水层孔隙水Cl-浓度垂向剖面(SY1钻孔数据引自文献[7]; G1数据引自文献[33]; LZ12数据未发表)

    Figure 4.  Porewater Cl- vertical profiles of aquita in the east coastal area of China

    图 5  弱透水层孔隙水ρ(Br-) 与ρ(Cl-)(a)和Cl/Br与ρ(Cl-)(b)关系图

    Figure 5.  Relationship between Br- and Cl- (a), Cl/Br and Cl- (b) in the aquitard porewater

    图 6  江苏滨海J1、J4和SY1孔模拟与实测ρ(Cl-)剖面

    Figure 6.  Simulated Cl data and measured ones for J1, J4 and SY1 boreholes in the Jiangsu coastal area

    表  1  孔隙水运移模型中介质参数和运移时间设计

    Table  1.   Medium parameters and transport time design of porewater transport model

    模拟条件a 模拟条件b 模拟条件c
    弱透水层厚度/m 10 20 5,10,15,20,30,50
    渗透系数K/(m·s-1) 1×10-10 1×10-9 1×10-8 1×10-10 1×10-9 1×10-8 1×10-10
    运移时间/ka 1,2,5 5~0
    扩散系数De/(m2·s-1) 4.5×10-10
    上、下边界 定浓度100 mg/L
    下载: 导出CSV

    表  2  一维垂向对流-扩散模型的参数及边界条件

    Table  2.   Parameters and boundary conditions in the 1-D advective-diffusion flow model

    钻孔 模拟深度/m 运移时间/a 渗透系数
    K/(m· s-1)
    扩散系数
    De/(m2·s-1)
    上边界:定浓度(g/L) 下边界 海相沉积层厚度/m
    T1 T2
    J1 30 8 000 800 3.4×10-10 4×10-10 T1:19;T2:23 流出边界 2~14
    J4 50 8 000 500 0~20:7.5×10-9 7×10-10 T1:16;T2:0.1 4~18
    20~50:1.3×10-9
    SY1 60 8 000 300 0~20:1.2×10-8 5×10-10 T1:19;T2:0.1 10~25
    20~60:6.2×10-10 2.3×10-10
    下载: 导出CSV
  • [1] Huang G X, Liu C Y, Sun J C, et al. A regional scale investigation on factors controlling the groundwater chemistry of various aquifers in a rapidly urbanized area: A case study of the Pearl River Delta[J]. Science of the Total Environment, 2018, 625: 510-518. doi: 10.1016/j.scitotenv.2017.12.322
    [2] 高茂生, 骆永明. 我国重点海岸带地下水资源问题与海水入侵防控[J]. 中国科学院院刊, 2016, 31(10): 1197-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201610010.htm

    Gao M S, Luo Y M. Change of groundwater resource and prevention and control of seawater intrusion in coastal zone[J]. Proceedings of the Chinese Academy of Sciences, 2016, 31(10): 1197-1203(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201610010.htm
    [3] Shi X Q, Jiang F, Reng Z X, et al. Characterization of the regional groundwater quality evolution in the North Plain of Jiangsu Province, China[J]. Environmental Earth Sciences, 2015, 74(7): 5587-5604. doi: 10.1007/s12665-015-4575-4
    [4] 王焰新, 甘义群, 邓娅敏, 等. 海岸带海陆交互作用过程及其生态环境效应研究进展[J]. 地质科技通报, 2020, 39(1): 1-10. doi: 10.19509/j.cnki.dzkq.2020.0101

    Wang Y X, Gan Y Q, Deng Y M, et al. Land-ocean interactions, and their eco-environmental effects in the coastal zone: Current progress and future perspectives[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 1-10(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0101
    [5] Li J, Liang X, Zhang Y N, et al. Salinization of porewater in a multiple aquitard-aquifer system in Jiangsu Coastal Plain, China[J]. Hydrogeology Journal, 2017, 25: 2377-2390. doi: 10.1007/s10040-017-1622-0
    [6] Li J, Liang X, Jin M G, et al. Origin and evolution of aquitard porewater in the western coastal plain of Bohai Bay, China[J]. Groundwater, 2017, 55(6): 917-925. doi: 10.1111/gwat.12590
    [7] Ge Q, Liang X, Jin M G, et al. Origin and geochemical processes of porewater in clay-rich deposits in the North Jiangsu Coastal Plain, China[J]. Geofluids, 2017: 1-13, doi. org/10.1155/2017/5486297. doi: 10.1155/2017/5486297
    [8] Larsen F, Tran L V, Hoang H V, et al. Groundwater salinity influenced by Holocene seawater trapped in incised valleys in the Red River delta plain[J]. Nature Geoscience, 2017, 10(5): 376-381. doi: 10.1038/ngeo2938
    [9] Xu N Z, Gong J S, Yang G Q. Using environmental isotopes along with major hydro-geochemical compositions to assess deep groundwater formation and evolution in eastern coastal China[J]. Journal of Contaminate Hydrology, 2018, 208: 1-9. doi: 10.1016/j.jconhyd.2017.11.003
    [10] Post V E A, Van Der Plicht H, Meijer H. The origin of brackish and saline groundwater in the coastal area of the Netherlands[J]. Netherlands Journal of Geosciences, 2003, 82(2): 133-147. doi: 10.1017/S0016774600020692
    [11] Han D M, Cao G L, Currell M J, et al. Groundwater salinization and flushing during glacial-interglacial cycles: Insights from aquitard porewater tracer profiles in the North China Plain[J]. Water Resources Research, 2020: 1-23, doi: 10.1029/2020WR027879.
    [12] Wang Y, Jiao J J, Cherry J A., et al. Contribution of the aquitard to the regional groundwater hydrochemistry of the underlying confined aquifer in the Pearl River Delta, China[J]. Science of the Total Environment, 2013, 461/462: 663-671. doi: 10.1016/j.scitotenv.2013.05.046
    [13] 胥勤勉, 袁桂邦, 张金起, 等. 渤海湾沿岸晚第四纪地层划分及地质意义[J]. 地质学报, 2011, 85(8): 1352-1367. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201108010.htm

    Xu Q M, Yuan G L, Zhang J Q, et al. Stratigraphic division of the Late Quaternary strata along the coast of Bohai Bay and its geology significance[J]. Acta Geologica Sinica, 2011, 85(8): 1352-1367(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201108010.htm
    [14] Xue Y Q, Wu J C, Ye S J, et al. Hydrogeological and hydrogeochemical studies for salt water intrusion on the south coast of Laizhou Bay, China[J]. Ground Water, 2000, 38(1): 38-45. doi: 10.1111/j.1745-6584.2000.tb00200.x
    [15] He Z K, Ma C M, Zhou A G, et al. Using hydrochemical and stable isotopic (δ2H, δ18O, δ11B, and δ37Cl) data to understand groundwater evolution in an unconsolidated aquifer system in the southern coastal area of Laizhou Bay, China[J]. Applied Geochemistry, 2018, 90: 129-141. doi: 10.1016/j.apgeochem.2018.01.003
    [16] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103
    [17] Mazurek M, Alt-Epping P, Bath A, et al. Natural tracer profiles across argillaceous formations[J]. Applied Geochemistry, 2011, 26(7): 1035-1064. doi: 10.1016/j.apgeochem.2011.03.124
    [18] Harrington G A, Gardner W P, Smerdon B D, et al. Palaeohydrogeological insights from natural tracer profiles in aquitard porewater, Great Artesian Basin, Australia[J]. Water Resources Research, 2013, 49(7): 4054-4070. doi: 10.1002/wrcr.20327
    [19] Hendry M J, Barbour S L, Novakowski K, et al. Paleohydrogeology of the Cretaceous sediments of the Williston Basin using stable isotopes of water[J]. Water Resources Research, 2013, 49(8): 4580-4592. doi: 10.1002/wrcr.20321
    [20] Hendry M J, Harrington G A. Comparing vertical profiles of natural tracers in the Williston Basin to estimate the onset of deep aquifer activation[J]. Water Resources Research, 2014, 50(8): 6496-6506. doi: 10.1002/2014WR015652
    [21] Kwong H T, Jiao J J, Liu K, et al. Geochemical signature of pore water from core samples and its implications on the origin of saline pore water in Cangzhou, North China Plain[J]. Journal of Geochemical Exploration, 2015, 157: 143-152. doi: 10.1016/j.gexplo.2015.06.008
    [22] 康博. 江苏沿海地区地下水演化与合理开发利用研究[D]. 长春: 吉林大学, 2017.

    Kang B. The study of groundwater evolution and rational exploitation and utilizing in Jiangsu coastal area[D]. Changchun: Jilin University, 2017(in Chinese with English abstract).
    [23] 赵继昌, 梁静, 蔡鹤生. 苏北平原地下咸淡水形成与含水介质的关系[J]. 水文地质工程地质, 1993(3): 25-27 https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199303007.htm

    Zhao J C, Liang J, Cai H S. Relationship between the formation of brackish water and aquifer media in the Subei Plain[J]. Hydrogeology and Engineering Geology, 1993(3): 25-27(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199303007.htm
    [24] 韩有松, 孟广兰, 王少青. 中国北方沿海第四纪地下卤水[M]. 北京: 科学出版社, 1996.

    Han Y S, Meng G L, Wang S Q. Quaternary underground brines along the northern coast of China[M]. Beijing: Science Press, 1996(in Chinese).
    [25] 杨达源. 江苏沿海第四纪海侵层的分布与新构造运动的基本特征[J]. 地震学刊, 1986(1): 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK198601003.htm

    Yang D Y. Quaternary transgressive sediments and neo-tectonic movement in the coastal area of Jiangsu Province[J]. Journal of Seismology, 1986(1): 24-32(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK198601003.htm
    [26] 鲍俊林. 明清江苏沿海盐作地理与人地关系变迁[D]. 上海: 复旦大学, 2014.

    Bao J L. Jiangsu coast salt activity geography and the changes of human-land relationship in Ming and Qing dynasties[D]. Shanghai: Fudan University, 2014(in Chinese with English abstract).
    [27] 葛勤, 梁杏, 龚绪龙, 等. 不同饱和黏性土渗透系数预测方法的应用与对比: 以苏北沿海平原黏土为例[J]. 地球科学, 2017, 42(5): 793-803. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705014.htm

    Ge Q, Liang X, Gong X L, et al. Application and comparison of various methods for determining hydraulic conductivity in saturated clay-rich deposits: A case study of clay-rich sediments in North Jiangsu Coastal Plain[J]. Earth Science, 2017, 42(5): 793-803(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705014.htm
    [28] 李静, 梁杏, 靳孟贵, 低渗透介质孔隙溶液的提取及其应用综述[J]. 水文地质工程地质, 2012, 39(4): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201204008.htm

    Li J, Liang X, Jin M G. Review on porewater extraction techniques in low-permeability media and their application[J]. Hydrogeology and Engineering Geology, 2012, 39(4): 26-31(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201204008.htm
    [29] 赵建芳, 汪丙国, 廖嘉琦, 等. 基于野外Guelph入渗法与室内变水头达西法的土壤饱和渗透系数变化规律[J]. 地质科技情报, 2019, 38(2): 235-242. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902027.htm

    Zhao J F. Wang B G, Liao J Q, et al. Variation law of soil saturated hydraulic conductivity based on field Guelph infiltration method and indoor variable head Darcy method[J]. Geological Science and Technology Information, 2019, 38(2): 235-242(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902027.htm
    [30] 葛勤, 梁杏, 龚绪龙, 等. 低渗透岩土有效扩散系数的室内测定与分析[J]. 水文地质工程地质, 2017, 44(3): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201703016.htm

    Ge Q, Liang X, Gong X L, et al. Laboratory determination and analysis of effective diffusion coefficients for low-permeability rock and clay[J], Hydrogeology and Engineering Geology, 2017, 44(3): 93-99(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201703016.htm
    [31] 缪卫东, 李世杰, 王润华, 长江三角洲北翼J9孔岩芯沉积特征及地层初步划分[J]. 第四纪研究, 2009, 29(1): 126-134.

    Miao W D, Li S J, Wang R H, Preliminary study on sedimentary characteristics and stratum division of J9 core in the north wing of the Yangtze River Delta[J]. Quaternary Sciences, 2009, 29(1): 126-134(in Chinese with English abstract).
    [32] Cartwright I, Weaver T R, Fulton S, et al. Hydrogeochemical and isotopic constraints on the origins of dryland salinity, Murray Basin, Victoria, Australia[J]. Applied Geochemistry, 2004, 19: 1233-1254.
    [33] Li J, Liang X, Jin M G, et al. Geochemistry of clayey aquitard pore water as archive of paleo-environment, western Bohai Bay[J]. Journal of Earth Science, 2015, 26(3): 445-452.
    [34] Qi H H, Ma C M, He Z K, et al. Lithium and its isotopes as tracers of groundwater salinization: A study in the southern coastal plain of Laizhou Bay, China[J]. Science of the Total Environment, 2019, 650(1): 878-890.
    [35] Davis S N, Whittemore D O, Fabryka-martin J. Uses of chloride/bromide ratios in studies of potable water[J]. Groundwater, 1998, 36(2): 338-350.
    [36] 王绍武, 黄建斌, 闻新宇, 等. 4~2 ka BP中国干旱的证据和模拟研究[J]. 科学通报, 2007, 52(20): 2428-2433. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200720018.htm

    Wang S W, Huang J B, Wen X Y, et al. Evidence and simulation of drought during 4-2 ka BP in China[J]. Chinese ScienceBulletin, 2007, 52(20): 2428-2433(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200720018.htm
    [37] Batlle-Aguilar J, Cook P G, Harrington G A. Comparison of hydraulic and chemical methods for determining hydraulic conductivity and leakage rates in argillaceous aquitards[J]. Journal of Hydrology, 2016, 523: 102-121.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  642
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08
  • 网络出版日期:  2022-03-02

目录

    /

    返回文章
    返回