Material field structure of ore-forming elements and deep prospecting potential of Xitieshan lead-zinc deposit, Qinghai Province
-
摘要: 青海省柴达木盆地北缘锡铁山铅锌矿是我国大型的喷流沉积型(SEDEX)矿床,赋矿围岩主要是大理岩和片岩,浅部主要为大理岩型矿体,深部主要为片岩型矿体。系统描述了不同矿石类型中铅锌矿体与黄铁矿的空间共生关系、矿体空间形态三维变化规律;利用局部奇异性分析方法、相关性分析方法对矿区Pb、Zn、Ag、Au等成矿元素物质场结构特征及变化趋势进行了系统分析,2种分析方法均可表现元素物质场不同的结构特征,即:Pb、Zn、Au元素整体上沿着矿体的侧伏方向仍然有明显的向深部富集的趋势,且不受大理岩的影响,在片岩中物质场所反映的元素富集程度依然很强;Ag元素整体上从浅部到深部在矿化空间内均有明显的不连续富集特征。锡铁山铅锌矿水平方向上元素分带由远至近(由西向东)依次为Mn-Fe-S-Ag-Pb-Zn-S-Au,垂向上元素分带由上到下依次为Mn-S-Ag-Pb-Zn-S-Au,同时系统研究了成矿元素物质场中元素富集结构的变化规律,分析讨论了锡铁山深部找矿潜力。Abstract: The Xitieshan lead-zinc deposit in Qaidam, Qinghai Province, is a large-scale SEDEX deposit in China. The host rocks are mainly marble and schist, the marble-style ore-bodies mainly exist in the shallow part and the schist-style ore-bodies mainly exist in the deep part. This paper systematically describes the spatial symbiosis relationship between lead-zinc ore-body and pyrite in different ore types and the three-dimensional spatial change rule of ore-body spatial shape. The material field structure and change trend of Pb, Zn, Ag, Au and other ore-forming elements in the mining area are systematically analyzed by the local singularity analysis method and correlation analysis method. Both analysis methods show different structural characteristics of the material field of elements, that is, Pb, Zn and Au are still obviously enriched to the depth along the side direction of the ore-body as a whole, and are not affected by marble. In the schist, the concentration of elements is still very strong, and Ag is obviously discontinuous in the mineralization space from the shallow to the deep. The element zoning in the horizontal direction of Xitieshan lead-zinc mine is Mn-Fe-S-Ag-Pb-Zn-S-Au from the far (hydrothermal center) to the near, and Mn-S-Ag-Pb-Zn-S-Au from the top to the bottom in the vertical direction. At the same time, we systematically study the change rule of element enrichment structure in the ore forming field, analyze and discuss the prospecting potential in the deep part of Xitieshan.
-
图 1 柴北缘及邻区构造分区图(据文献[12]修改)
Figure 1. Tectonic zoning map of northern margin and adjacent areas of Qaidam Basin
图 2 青海省锡铁山铅锌矿区地质图
1.古元古界达肯大坂群;2.上奥陶统滩间山群下段基性与酸性火山碎屑岩(现已变质成斜长角闪岩);3.上奥陶统滩间山群上段热水沉积+正常沉积岩(黑色岩性,主含矿层);4.上奥陶统滩间山群变中性火山碎屑岩(现已变质为斜长绢云绿泥片岩等);5.上奥陶统滩间山群紫红色砂岩;6.上奥陶统滩间山群下段基性火山碎屑岩;7.上奥陶统滩间山群中段正常沉积岩;8.上奥陶统滩间山群上段基性火山碎屑岩;9.上奥陶统滩间山群上段基性熔岩;10.上泥盆统阿木尼克组,紫红色底部砾岩及碎屑岩;11.下石炭统城墙沟组,紫红色碎屑岩;12.新近系中新统上干柴沟组,紫红色碎屑岩;13.第四系洪冲积物;14.大理岩;15.铅锌矿体;16.角度不整合界线;17.逆断层及编号;18.断层;19.勘探线及编号
Figure 2. Geological map of Xitieshan lead-zinc mining area in Qinghai Province
表 1 锡铁山铅锌矿区成矿元素与伴生元素相关性统计
Table 1. Statistics of correlation between main metallogenic elements and associated elements in Xitieshan lead-zinc mining area
Pb Zn Ag Au S Pb 1 Zn 0.412** 1 Ag 0.650** 0.217** 1 Au 0.029* 0.024 0.378** 1 S 0.216** 0.320** 0.203** 0.060** 1 注:**为在0.01置信水平(单侧)上显著相关;*为在0.05置信水平(单侧)上显著相关. 表 2 锡铁山铅锌矿区主成矿元素及伴生元素品位统计
Table 2. Statistics of grade of main metallogenic elements and associated elements in Xitieshan lead-zinc mining area
元素质量分数与累加特征值 最大值 最小值 品位下限 w(Pb)/% 59.27 0.01 7.1 w(Zn)/% 50.63 0.01 8.0 w(Ag)/10-6 1 364.38 0 72.0 w(Au)/10-6 185.00 0 0.8 w(Pb+Zn+Au+Ag)/% 64.21 0.02 13.4 -
[1] 邬介人, 任秉琛, 张莓, 等. 青海锡铁山块状硫化物矿床的类型及地质特征[J]. 中国地质科学院西安地质矿产研究所所刊, 1987(20): 1-88. https://www.cnki.com.cn/Article/CJFDTOTAL-XBFK198706000.htm [2] 李峰, 吴志亮, 李保珠, 等. 柴达木盆地北缘滩间山群新厘定[J]. 西北地质, 2006, 39(3): 83-90. doi: 10.3969/j.issn.1009-6248.2006.03.012 [3] 李峰, 邓吉牛, 坚润堂, 等. 青海锡铁山铅锌矿床地质找矿新进展[J]. 矿物学报, 2007, 7(增刊1): 436-438. [4] 邓吉牛. 青海锡铁山矿区褶皱构造及其找矿预测[J]. 有色金属矿产与勘查, 1999, 18(5): 283-288. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS199905004.htm [5] 张德全, 王富春, 李大新, 等. 柴北缘地区的两类块状硫化物矿床: Ⅰ. 锡铁山式SEDEX型铅锌矿床[J]. 矿床地质, 2005, 24(5): 471- 480. doi: 10.3969/j.issn.0258-7106.2005.05.001 [6] 张德全, 党兴彦, 李大新, 等. 柴北缘地区的两类块状硫化物矿床: Ⅱ. 青龙滩式VHMS型Cu-S矿床[J]. 矿床地质, 2005, 24(6): 575-583. doi: 10.3969/j.issn.0258-7106.2005.06.001 [7] 祝新友, 邓吉牛, 王京彬, 等. 锡铁山铅锌矿床网脉状蚀变管道相的识别与研究[J]. 地球化学, 2007, 36(1): 37-48. doi: 10.3321/j.issn:0379-1726.2007.01.004 [8] 邓达文, 孔华, 奚小双. 青海锡铁山热水沉积型铅锌矿床的地球化学特征[J]. 矿物岩石地球化学通报, 2003, 22(4): 310-313. doi: 10.3969/j.issn.1007-2802.2003.04.005 [9] 李义邦, 李厚友, 钟正春. 锡铁山铅锌矿深边部找矿成就及未来5—10年找矿规划[C]//汪海涛. 戈壁明珠: 锡铁山铅锌矿成矿与找矿前景. 北京: 冶金工业出版社, 2011: 5-31. [10] 孙景. 青海锡铁山铅锌矿矿床成因与成矿预测[D]. 长春: 吉林大学, 2018. [11] 钟永生, 孙华山, 葛风健, 等. 青海锡铁山铅锌矿床喷流管道相识别、控矿作用及其矿床成因和找矿勘查意义[J]. 地质科技情报, 2018, 37(5): 154-161. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805022.htm [12] Zhang C, Bader T, Zhang L, et al. The multi-stage tectonic evolution of the Xitieshan terrane, North Qaidam orogen, western China: From Grenville-age orogeny to Early-Paleozoic ultrahigh-pressure metamorphism[J]. Gondwana Research, 2017, 41: 290-300. doi: 10.1016/j.gr.2015.04.011 [13] 杨经绥. 许志琴. 宋述光. 等. 青海都兰榴辉岩的发现及对中国中央造山带内高压—超高压变质带研究的意义[J]. 地质学报, 2000, 74(2): 156-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200002006.htm [14] 陈丹玲, 孙勇, 刘良, 等. 柴北缘鱼卡河榴辉岩的变质演化—石榴石成分环带及矿物反应结构的证据[J]. 岩石学报, 2005, 21(4): 1039-1048. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200504001.htm [15] 赵志新. 柴北缘锡铁山地区古生代构造岩浆演化与铅锌成矿控制[D]. 武汉: 中国地质大学, 2018. [16] 李鹏, 李义邦, 王海丰, 等. 柴北缘锡铁山铅锌矿床构造变形特征及其地质意义[J]. 地质科技情报, 2019, 38(4): 108-123. doi: 10.3969/j.issn.1009-6248.2019.04.008 [17] Song S G, Niu Y L, Su L, et al. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China[J]. Earth-Science Reviews, 2014, 129: 59-84. doi: 10.1016/j.earscirev.2013.11.010 [18] 张建新, 杨经绥, 许志琴, 等. 柴北缘榴辉岩的峰期和退变质年龄: 来自U-Pb及Ar-Ar同位素测定的证据[J]. 地球化学, 2000, 29(3): 217-222. doi: 10.3321/j.issn:0379-1726.2000.03.002 [19] 祝新友, 邓吉牛, 王京彬, 等. 锡铁山矿床两类喷流沉积成因的铅锌矿体研究[J]. 矿床地质, 2006, 25(3): 252-262. doi: 10.3969/j.issn.0258-7106.2006.03.004 [20] 胡荣国, 邱华宁, Jan R WIJBRANS, 等. 柴北缘锡铁山花岗质片麻岩深熔作用年代和冷却历史: 来自浅色体40Ar/39Ar年代学证据[J]. 大地构造与成矿学, 2016, 40(1): 125-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201601011.htm [21] Cheng Q M, Agterberg F P, Ballatyne S B. The separation of geochemical anomalied from background by fractal methods[J]. J. Geochemical Exploration, 1994, 51: 109-130. doi: 10.1016/0375-6742(94)90013-2 [22] 成秋明. 成矿过程奇异性与成矿预测定量化的新理论与新方法[J]. 地学前缘, 2007, 14(5): 42-53. doi: 10.3321/j.issn:1005-2321.2007.05.005 [23] Zuo R G, Wang J, Chen G, et al. Identification of weak anomalies: A multi-fractal perspective[J]. J. Geochemical Exploration, 2015, 148: 12-24. doi: 10.1016/j.gexplo.2014.05.005 [24] 施海鹏, 魏俊浩, 赵少卿, 等. 宁夏贺兰山北段1∶5万化探数据的含量-面积分形异常特征及找矿预测[J]. 地质科技情报, 2015, 34(3): 71-79, 95. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503009.htm [25] Agterberg F P. Multifractals and geostatistics[J]. J. Geochemical Exploration, 2012, 122: 113-123. doi: 10.1016/j.gexplo.2012.04.001 [26] 翟玉林, 魏俊浩, 李艳军, 等. SEDEX型矿床研究现状及进展[J]. 物探与化探, 2017, 41(3): 392-401. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201703002.htm [27] 王振东, 罗先熔. 浅析锡铁山铅锌矿成矿规律及找矿方向[J]. 南方国土资源, 2012(1): 43-46. doi: 10.3969/j.issn.1672-321X.2012.01.013 [28] 魏俊浩. 初论成矿场与矿产勘查意义[J]. 地质科技通报, 2020, 39(1): 114-129. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9932.shtml