Stability evaluation of basalt platform in Zhejiang Province: A case study of Diyayuan landslide in Shengzhou City
-
摘要: 玄武岩台地型滑坡是一种特殊的滑坡类型,此前对其稳定性的研究较少。以嵊州市地雅园滑坡为研究对象,采用三维数值模拟的方法进行了稳定性分析评价,首先基于详细的地质资料采用三维模拟软件进行了建模;然后基于P-Ⅲ型分布曲线确定了降雨重现期,分别采用岩土软件MIDAS进行了滑坡稳定性模拟与三维运动模拟平台DAN3D软件进行了滑坡影响范围计算;最后对影响地雅园滑坡稳定性的因子进行了敏感性分析。结果表明:不同降雨强度对地雅园滑坡稳定性的影响不同,最不利工况为百年一遇降雨工况,此时滑坡稳定性系数为0.946,破坏概率为65.25%,影响范围最大增加了36.83%;内摩擦角和降雨是影响地雅园滑坡稳定性的主要因子。分析原因认为玄武岩台地型滑坡稳定性主要与硅藻土滑带、节理裂隙面的发育情况、降雨入渗滞后性有明显的相关性。本研究成果可为同类滑坡稳定性评价提供参考依据。Abstract: Basalt platform is a special type of landslide, however, its stability has received little attention before.This paper takes the Diyayuan landslide in Shengzhou city as the research object, and uses the method of three-dimensional numerical simulation to analyze and evaluate its stability.Then the rainfall recurrence period was determined based on the P-Ⅲ distribution curve, and the geotechnical software MIDAS was used to simulate the landslide stability and the 3D motion simulation platform DAN3D software was used to calculate the landslide impact range; finally, sensitivity analysis was carried out for the stability factors affecting the landslide The results show that different rainfall intensity has great influence on the stability of Diyayuan landslide.At this time, the stability coefficient of landslide is 0.946, the failure probability is 65.25%, and the maximum impact range increases by 36.83%; the angle of internal friction and rainfall are the main factors affecting the stability of Diyayuan landslide The analysis shows that the stability of basalt platform landslide is obviously correlated with the development of diatomite slip zone, joint and fissure surface, and the hysteresis of rainfall infiltration.The results of this paper can provide reference for the stability evaluation of similar landslide.
-
Key words:
- basalt platform /
- 3D-modeling /
- rainfall /
- landslide stability /
- scope of influence
-
表 1 各土层室内实验参数统计
Table 1. Statistics of laboratory experiment parameters of each soil layer
土层 统计项目 重度γ/(kN·m-3) 内摩擦角φ/(°) 黏聚力c/kPa 渗透系数/(10-6cm·s-1) 人工填土 统计个数 3 3 3 1 最大值 19.1 13.0 44.0 3.2 最小值 15.5 8.0 23.0 3.2 平均值 17.8 11.1 34.3 3.2 黏土 统计个数 4 4 4 1 最大值 17.8 14.5 45.0 4.1 最小值 16.2 10.0 38.0 4.1 平均值 16.9 12.8 42.5 4.1 玄武岩 统计个数 7 7 7 7 最大值 19.2 16.0 38.0 400.0 最小值 15.7 13.8 25.0 3.2 平均值 17.2 15.1 34.0 61.4 硅藻土 统计个数 37 37 37 17 最大值 16.0 14.1 49.0 6.2 最小值 13.5 7.6 32.0 2.5 平均值 14.9 10.6 39.7 4.61 表 2 滑坡体物理力学性质统计
Table 2. Statistics of physical and mechanical properties of landslide
岩土体名称 重度γ/(kN·m-3) 黏聚力c/kPa 内摩擦角φ/(°) 渗透系数/(10-6cm·s-1) 滑体 15.5 35.0 12.0 61.4 滑带 15.0 35.0 10.0 4.6 滑床 18.0 34.0 11.0 - 表 3 不同重现期下的降雨量统计
Table 3. Statistics of rainfall under different recurrence periods
降雨重现期/a 5 10 20 50 100 三日累计降雨量/mm 172.03 213.85 241.82 275.38 329.50 表 4 正交试验因素水平表
Table 4. Factor levels of orthogonal experiment
水平 重度γ/(kN·m-3) 黏聚力c/kPa 内摩擦角φ/(°) 降雨重现期T/a 地表荷载/kPa 1 13 33 8 5 10 2 14 34 9 10 20 3 15 35 10 20 30 4 16 36 11 50 40 5 17 37 12 100 50 表 5 不同降雨工况下滑坡稳定性系数及破坏概率统计
Table 5. Statistics of landslide stability coefficient and failure probability under different rainfall conditions
工况 天然工况 5 a一遇 10 a一遇 20 a一遇 50 a一遇 100 a一遇 稳定性系数Fs 1.399 1.129 1.086 1.050 0.981 0.946 孔隙水压力/kPa 31.84 39.81 47.67 59.38 87.23 破坏概率/% 2.01 17.46 27.05 35.60 55.75 65.25 表 6 正交设计方案及计算结果
Table 6. Design and calculation results of the orthogonal experiment
水平 黏聚力c/kPa 内摩擦角φ/(°) 重度γ/(kN·m-3) 降雨量T/mm 地表荷载q/kPa 稳定性系数Fs 1 1 1 1 1 1 1.621 2 1 2 2 2 2 1.760 3 1 3 3 3 3 1.908 4 1 4 4 4 4 2.106 5 1 5 5 5 5 2.223 6 2 1 2 3 4 1.675 7 2 2 3 4 5 1.818 8 2 3 4 5 1 1.902 9 2 4 5 1 2 2.073 10 2 5 1 2 3 2.147 11 3 1 3 5 2 1.669 12 3 2 4 1 3 1.828 13 3 3 5 2 4 1.976 14 3 4 1 3 5 2.070 15 3 5 2 4 1 2.138 16 4 1 4 2 5 1.730 17 4 2 5 3 1 1.819 18 4 3 1 4 2 1.910 19 4 4 2 5 3 2.061 20 4 5 3 1 4 2.237 21 5 1 5 4 3 1.709 22 5 2 1 5 4 1.832 23 5 3 2 1 5 1.995 24 5 4 3 2 1 2.069 25 5 5 4 3 2 2.210 表 7 稳定系数极差分析结果
Table 7. Range analysis of stability coefficient
稳定性系数均值 黏聚力c/kPa 内摩擦角φ/(°) 重度γ/(kN·m-3) 降雨量T/mm 地表荷载q/kPa Fs1 1.923 6 1.680 8 1.916 0 1.909 8 1.950 8 Fs2 1.923 1 1.811 4 1.925 8 1.924 4 1.936 8 Fs3 1.936 2 1.938 2 1.940 2 1.930 6 1.936 4 Fs4 1.951 4 2.075 8 1.955 2 1.965 2 1.936 2 Fs5 1.963 2 2.191 2 1.961 2 1.967 2 1.937 4 Rj 0.040 1 0.510 4 0.045 2 0.057 4 0.014 6 敏感性 内摩擦角 > 降雨量 > 重度 > 黏聚力 > 地表荷载 -
[1] 高华喜, 黄克玲, 刘成东. 浙江嵊州风火岗玄武岩台地滑坡成因分析及防治[J]. 中国地质灾害与防治学报, 2004, 15(3): 141-143. doi: 10.3969/j.issn.1003-8035.2004.03.031 [2] 俞伯汀. 浙江省玄武岩台地区滑坡的成因机理及防治对策[D]. 杭州: 浙江大学, 2006. [3] 郭靖. 黔西玄武岩地区滑坡易发性评价及玄武岩风化程度判别研究[D]. 长沙: 中南大学, 2012. [4] 王振环, 郑德学, 邢国君. 小山水电站厂房后山坡稳定性的研究[J]. 世界地质, 1997, 23(3): 60-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ703.011.htm [5] 刘国恩. 苏北玄武岩分布区滑坡研究与防治[J]. 江苏地质, 1999, 12(2): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ902.010.htm [6] 陈允法, 许建聪, 俞伯汀, 等. 上三公路5#滑坡稳定性分析[J]. 岩石力学与工程学报, 2004, 21(增刊1): 4509-4512. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2004S1052.htm [7] 俞伯汀, 孙红月, 尚岳全, 等. 玄武岩台地区滑坡典型特征及防治对策[J]. 中国地质灾害与防治学报, 2007, 26(2): 17-21. doi: 10.3969/j.issn.1003-8035.2007.02.004 [8] 刘晶晶, 张文居, 韩俊, 等. 米易县D07号地块玄武岩残坡积膨胀土滑坡成因机制分析及稳定性评价[J]. 地质灾害与环境保护, 2016, 27(2): 26-30. doi: 10.3969/j.issn.1006-4362.2016.02.006 [9] 唐小明, 游省易, 尚岳全. 浙江省玄武岩台地地貌及地质灾害[J]. 浙江大学学报: 理学版, 2009, 36(2): 231-236. doi: 10.3785/j.issn.1008-9497.2009.02.025 [10] Singh V P, Singh K. Parameter estimation for log-pearson type Ⅲ distribution by POME[J]. Journal of Hydraulic Engineering, 1988, 114(1): 43-55. doi: 10.1061/(ASCE)0733-9429(1988)114:1(43) [11] Duncan J M. State of the art: Limit equilibrium and finite element analysis of slopes[J]. Journal of Geotechnical Engineering ASCE, 1996, 122(7): 577-596. doi: 10.1061/(ASCE)0733-9410(1996)122:7(577) [12] Chen Yifan, Lin Hang, Cao Rihong, et al. Slope stability analysis considering different contributions of shear strength reduction method[J]. Arabian Journal of Geomechanics, 2021, 21(3): 1-9. http://www.researchgate.net/publication/347624274_Slope_Stability_Analysis_Considering_Different_Contributions_of_Shear_Strength_Parameters [13] Yu Mingdong. Analysis on stability of mountain mass and numerical calculation of landslide resistance based on strength reduction method[J]. Arabian Journal of Geosciences, 2020, 13(14): 617-625. doi: 10.1007/s12517-020-05617-y [14] Xia Peng, Hu Xinli, Wu Shuangshuang, et al. Slope stability analysis based on group descision theory and fuzzy comprehensive evaluation[J]. Journal of Earth Science, 2020, 31(6): 1121-1132. doi: 10.1007/s12583-020-1101-8 [15] Ugai K, Leshchinsky D. Three-dimensional limit equilibrium and finite element analyses: A comparison of results[J]. The Japanese Geotechnical Society, 1995, 35(4): 1-7. http://ci.nii.ac.jp/naid/110003945966 [16] Griffiths D V, Lane P A. Slope stability analysis by finite elements[J]. Geotechnique, 1999, 49(3): 387-403. doi: 10.1680/geot.1999.49.3.387 [17] Hungr O, Evans S G. Rock avalanche run out prediction using a dynamic model//Anon. Proceeding of 7th International Symposium on Landslides. Trondheim: [s. n. ], 1996, 1: 233-238. [18] McDougall S, Hungr O. A model for the analysis of rapid landslide motion across three-dimensional terrain[J]. Canadian Geotechical Journal, 2004, 41(6): 1084-1097. doi: 10.1139/t04-052 [19] Chen Fan, Xu Zhixiao. Discontinuous finite volume element method of two-dimensional unsaturated soil water movement problem[J]. Advances in Difference Equations, 2019(1): 478-492. doi: 10.1186/s13662-019-2395-7 [20] Ahmed E. Splitting-based domain decomposit-ion methods for two-phase flow with different rock types[J]. Advances in Water Resources, 2019, 54(40): 134-140. http://arxiv.org/abs/1906.03470v2 [21] Yang Z H, Xi P P, Jin J F. Landslide stability for Shuitianba in the Three Gorges area[J]. Global Geology, 2012, 15(3): 221-224. http://www.cqvip.com/QK/87465A/201203/43764093.html [22] 张俞, 殷坤龙, 郭子正, 等. 库水位变动联合降雨作用下麻柳林滑坡稳定性评价[J]. 地质科技情报, 2019, 38(6): 198-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906024.htm [23] 王腾飞, 李远耀, 曹颖, 等. 降雨型浅层土质滑坡非饱和土-水作用特征试验研究[J]. 地质科技情报, 2019, 38(6): 181-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906022.htm [24] 孙一清, 李德营, 殷坤龙, 等. 三峡库区堆积层滑坡间歇性活动预测: 以白水河滑坡为例[J]. 地质科技情报, 2019, 38(5): 195-203. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905021.htm