Diagenetic facies of dolomite and geochemical characteristics across the Cambrian-Ordovician transitions in the Central Uplift Zone, Tarim Basin
-
摘要:
成岩相识别与划分有助于碳酸盐岩储层分类评价及预测。为了明确塔里木盆地中央隆起带寒武系-奥陶系的白云岩成岩相类型及特征, 通过岩心描述、常规及铸体薄片观察、X衍射分析以及粒度分析等方法, 首先对其岩相学特征进行了详细研究并对成岩相类型进行了划分, 在此基础上, 结合O、C稳定同位素测试方法以及Fe、Mn、Sr、Li、U等常、微量元素测试技术探讨了各类白云岩成岩相的地球化学特征并建立了各类成岩相的模式。研究结果表明, 塔里木盆地中央隆起带寒武系-奥陶系白云岩成岩相可划分为准同生云化亚相(PD-F)、浅埋藏隐伏回流渗透云化亚相(SLRD-F)、浅埋藏活跃回流渗透云化亚相(SARD-F)、表生风化壳岩溶亚相(WK-F)和构造破碎亚相(TF-F)共5类。其中, PD-F模式的白云岩云化流体主要来自咸化海水并受部分淡水影响, 表现出O同位素负偏, Fe、Mn、Sr和Li质量分数明显偏高的特征; SARD-F模式的白云岩基本形成于正常海水, 个别样品受到埋藏溶蚀或重结晶作用以及淡水影响, 整体表现为O同位素值与奥陶纪海水一致, Fe、Mn、Sr质量分数相对较低的特点; SLRD-F模式的白云岩形成环境相对封闭, 受淡水影响较小, 表现为O同位素值与海水一致, Fe、Mn质量分数相对较低, Sr质量分数相对较高的特征; WK-F模式的白云岩样品由于经历表生淡水溶蚀作用和埋藏期的白云化作用, 具有O同位素负偏, Fe、U质量分数较高, Sr质量分数较低的特征; TF-F模式的白云岩样品受到构造热液的影响, 具有O同位素负偏, Fe、Mn、U、Li质量分数低的特征。
Abstract:The identification and division of diagenetic facies is useful for the classification, evaluation and prediction of carbonate reservoirs.To clarify the type and characteristics of the diagenetic facies of dolomite near the Cambrian-Ordovician transitions in the Central Uplift Zone of Tarim Basin, in this work, the lithographic characteristics of dolomite were studied in detail, and the category of diagenetic facies was divided by core description, conventional and casting thin section observation, X diffraction analysis and grain size analysis.Based on this, the geochemical characteristics of different diagenetic facies were discussed, and their formation models were established by testing stable isotopes, which included oxygen and carbon isotope as well as major and trace elements(Fe, Mn, Sr, Li and U).The results show that the diagenetic facies of Cambrian-Ordovician dolomite in the Central Uplift Zone, Tarim Basin, can be divided into five types, including penecontemporaneous dolomatization diagenetic facies(PD-F), shallow latent reflux dolomatization diagenetic facies(SLRD-F), shallow active reflux dolomatization diagenetic facies(SARD-F), weathered crust karstification diagenetic facies(WK-F) and tectonic fracture diagenetic facies(TF-F).Among them, the dolomitic fluid of PD-F mode dolostones mainly come from saltwalized seawater and is affected by freshwater, which shows an obviously negative bias of oxygenisotopes and high Fe, Mn, Sr and Li contents. The dolostone formed in the SARD-F mode shows a consistent value with Ordovician sea water and relatively low Fe, Mn, and Sr contents because it mainly formed in normal sea water environment and individually experienced burial dissolution and recrystallization and was affected by freshwater.Because the diagenetic environment of dolostone formed in SLRD-F mode is relatively closed, this dolostone is characterized by consistent values of oxygenisotopes, relatively low Fe and Mn contents but high Sr contents.Dolostone samples formed in WK-F mode have high Fe and U but low Sr contents because they experienced dissolution of freshwater and burial dolomitization.The dolostone formed in the TF-F model is characterized by low Fe, Mn, U and Li because of the influence of structural hydrothermal fluids.
-
Key words:
- diagenetic facies of dolomite /
- geochemistry /
- Cambrian-Ordovician /
- Tarim Basin
-
图 2 塔里木盆地下古生界白云岩成岩相特征
A.砂屑球粒泥晶膏质云岩,HT1井6 436.8 m,中寒武统沙依里克组;B.云斑灰云岩, SN7井7 104.00 m,下奥陶统蓬莱坝组;C.云斑云灰岩, SN7井7 100.05 m, 下奥陶统蓬莱坝组;D.中晶残余砂屑鮞粒白云岩,YB7井6 162.4 m, 下奥陶统蓬莱坝组;E.残余颗粒结构白云岩, 残余双壳类生物碎屑,SN7井7 078.71 m, 下奥陶统鹰山组;F.残余颗粒细晶白云岩, HT1井6 162.4 m,上寒武统丘里塔格组;G.马鞍形中晶白云岩, GL1井6 335.50 m, 下奥陶统蓬莱坝组;H.残余骨架结构,环带白云石,BT5井4 809.42 m,上寒武统丘里塔格组;I.构造角砾中-粗晶白云岩,晶间孔发育,YB5井6 742.80 m,下奥陶统鹰山组;J.角砾状粗-中晶云岩,YQ6井7 315.82 m,上寒武统丘里塔格组;K.中-粗晶残余砂屑云岩,YB5井6 741.40 m,下奥陶统蓬莱坝组;L.中-粗晶残余砂屑云岩,发育溶蚀孔洞,YB5井6 741.40 m,下奥陶统蓬莱坝组
Figure 2. Petrographic characteristics of the Lower Paleozoic dolomite in the Tarim Basin
表 1 塔里木盆地下古生界白云岩元素分析数据
Table 1. Element concentrations of the Lower Paleozoic dolomite in the Tarim Basin
样品编号 深度/m 层位 白云岩成岩相类型 白云石有序度 δ18O/‰ δ13C/‰ Mn Fe Sr Li U wB/% wB/10-6 BT5-26 5 218.84 阿瓦塔格组 PD-F / -6.50 -2.24 0.008 0 0.315 0 6 710.828 302.062 1.367 BT5-27 5 219.13 0.90 -7.09 -0.98 0.007 8 0.143 4 12 703.565 6.896 0.719 BT5-29 5 219.80 / -6.31 -1.67 0.003 4 0.130 4 11 055.838 31.577 1.371 BT5-31 5 220.55 0.61 -6.47 -1.38 0.010 1 0.449 3 1 114.320 633.177 2.175 BT5-32 5 221.55 / -7.09 -0.86 0.006 4 0.318 8 1 376.951 297.174 1.589 BT5-36 5 223.48 1 -7.22 -0.23 0.004 8 0.158 4 1 439.824 21.517 2.176 SN7-33 7 098.18 蓬莱坝组 SLRD-F / -5.02 -1.03 0.003 4 0.166 6 161.614 1.965 0.419 SN7-34 7 098.71 / -5.23 -0.95 0.003 2 0.157 5 180.707 2.158 0.749 SN7-36 7 100.05 0.82 -6.78 -1.97 0.002 1 0.070 4 276.677 0.609 0.819 SN7-38 7 103.41 0.79 -5.29 -1.87 0.003 3 0.141 1 226.082 2.447 0.819 SN7-42 7 134.25 0.80 -4.94 -1.86 0.002 8 0.125 7 312.775 2.258 0.719 YB5-13 6 743.20 SARD-F / -6.23 -1.51 0.006 6 0.214 7 174.313 1.319 2.487 YB5-14 6 839.70 / -6.98 -0.84 0.004 5 0.274 7 101.637 0.630 0.950 YB5-7 6 605.20 / -6.37 -0.81 0.005 8 0.166 0 2.407 139.924 0.959 BT5-21 4 810.54 丘里塔格组 0.89 -5.58 -1.18 0.003 2 0.141 8 132.155 2.657 1.908 BT5-24 4 812.49 0.99 -5.58 -0.71 0.003 1 0.079 4 81.046 0.359 0.609 BT5-55 5 784.32 肖尔布拉克组 1 -5.71 0.48 0.021 6 0.133 6 120.575 1.036 2.132 YQ6-7 7 117.93 丘里塔格组 WK-F / / / 0.003 7 0.374 1 64.396 5.761 6.412 YQ6-9 7 118.59 0.79 / / 0.004 3 0.334 0 50.162 3.368 2.192 YQ6-10-1 7 118.89 / / / 0.004 1 0.398 9 51.851 3.661 4.351 BT5-14 4 807.68 / -6.29 -1.07 0.003 3 0.192 6 106.202 2.122 0.911 BT5-17 4 808.62 / -6.50 -0.99 0.004 8 0.183 9 64.152 1.157 1.756 BT5-19 4 809.77 / -6.11 -1.25 0.003 8 0.131 1 101.641 1.472 1.312 YB5-10 6 741.00 蓬莱坝组 TF-F / -7.63 -1.08 0.004 3 0.121 6 63.272 0.531 1.101 YB5-11 6 741.40 0.89 -7.09 -1.27 0.004 6 0.082 1 72.537 0.309 0.828 YB5-12 6 742.80 / -7.59 -0.84 0.003 0 0.073 8 67.097 0.359 1.487 YB5-15 6 840.80 / -7.05 -0.50 0.002 1 0.025 2 139.034 1.715 0.888 YB5-16 6 841.20 0.92 -7.13 -1 0.002 9 0.013 2 85.456 1.057 3.669 YB5-18 6 842.50 / -7.02 -0.54 0.001 8 0.075 4 60.131 5.283 0.870 注:PD-F.准同生云化亚相;SLRD-F.浅埋藏隐伏回流渗透云化亚相;SARD-F.浅埋藏活跃回流渗透云化亚相;WK-F.表生风化壳岩溶亚相;TF-F.构造破碎亚相 -
[1] 王琼仙, 宋晓波, 陈洪德, 等. 川西龙门山前雷口坡组四段白云岩储层胶结物对早期孔隙的影响[J]. 石油实验地质, 2018, 40(6): 757-763. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201806003.htmWang Q X, Song X B, Chen H D, et al. Cement characteristics and effect sondolomite reservoir pores in the fourth member of Leikoupo Formation, Longmen Mountain front, western Sichuan Basin[J]. Petroleum Geology & Experiment, 2018, 40(6): 757-763 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201806003.htm [2] 余浩元, 蔡春芳, 郑剑锋, 等. 微生物结构对微生物白云岩孔隙特征的影响: 以塔里木盆地柯坪地区肖尔布拉克组为例[J]. 石油实验地质, 2018, 40(2): 233-243. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201802014.htmYu H Y, Cai C F, Zheng J F, et al. Influence of micro bialtex ture sonpore characteristics of microbialdolomites: A case study of Lower Cambrian Xiaoerbulake Formation in Keping Area, Tarim Basin[J]. Petroleum Geology & Experiment, 2018, 40(2): 233-243 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201802014.htm [3] 马新海, 王年梅, 田小彬. 塔东地区震旦系白云岩成因及储层发育模式[J]. 断块油气田, 2019, 26(5): 566-570. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201905006.htmMa X H, Wang N M, Tian X B. Genesis mechanism and reservoir model of Sinian dolomite in easternTarim Area[J]. Fault-Block Oiland Gas Field, 2019, 26(5): 566-570 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201905006.htm [4] 何治亮, 马永生, 张军涛, 等. 中国的白云岩与白云岩储层: 分布、成因与控制因素[J]. 石油与天然气地质, 2020, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001002.htmHe Z L, Ma Y S, Zhang J T, et al. Distribution, genetic mechanism and control factors of dolomite and dolomite reservoirsin China[J]. Oil & Gas Geology, 2020, 41(1): 1-14 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001002.htm [5] 李宗杰, 王鹏, 陈绪云, 等. 塔里木盆地顺南地区超深白云岩储层地震、地质综合预测[J]. 石油与天然气地质, 2020, 41(1): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001007.htmLi Z J, Wang P, Chen X Y, et al. Integrated seismic and geological prediction of ultra-deep dolomitere servoir in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(1): 59-67 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001007.htm [6] 何治亮, 金晓辉, 沃玉进, 等. 中国海相超深层碳酸盐岩油气成藏特点及勘探领域[J]. 中国石油勘探, 2016, 21(1): 3-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201601003.htmHe Z L, Jin X H, Wo Y J, et al. Hydrocar bonac cumulation characteristics and exploration domains of ultra-deep marine carbonates in China[J]. China Petroleum Exploration, 2016, 21(1): 3-14 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201601003.htm [7] 谢增业, 魏国齐, 李剑, 等. 中国海相碳酸盐岩大气田成藏特征与模式[J]. 石油学报, 2013, 34(增刊1): 29-40. doi: 10.7623/syxb2013S1003Xie Z Y, Wei G Q, Li J, et al. Reservoir characteristics and accumulation modes of large carbonate gas fields in China[J]. Acta Petrolei Sinica, 2013, 34(S1): 29-40 (in Chinese with English abstract). doi: 10.7623/syxb2013S1003 [8] 王金琪. 塔里木奥陶系岩溶储集的油气前景[J]. 石油与天然气地质, 1999, 20(4): 305-310. doi: 10.3321/j.issn:0253-9985.1999.04.008Wang J Q. Oil and gas prospects of Ordoviciankar strese rvoir in Tarim Basin[J]. Oil & Gas Geology, 1999, 20(4): 305-310 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.1999.04.008 [9] 吴仕强, 钱一雄, 李慧莉, 等. 塔里木盆地卡塔克隆起中下奥陶统鹰山组白云岩储集层特征及主控因素[J]. 古地理学报, 2012, 14(2): 209-218. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201202008.htmWu S Q, Qian Y X, Li H L, et al. Characteristics and main controlling factors of dolostone reservoir of the Middle-Lower OrdovicianYingshan Formationin Katak Uplift of Tarim Basin[J]. Journal of Palaeogeography, 2012, 14(2): 209-218 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201202008.htm [10] 杨海军, 李开开, 潘文庆, 等. 塔中地区奥陶系埋藏热液溶蚀流体活动及其对深部储层的改造作用[J]. 岩石学报, 2012, 28(3): 783-792. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203008.htmYang H J, Li K K, Pan W Q, et al. Burialhy drothermal dissolution fluid activity and its trans forming effecton the reservoirs in Ordovician in central Tarim[J]. Acta Petrologica Sinica, 2012, 28(3): 783-792 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203008.htm [11] 云露, 曹自成. 塔里木盆地顺南地区奥陶系油气富集与勘探潜力[J]. 石油与天然气地质, 2014, 35(6): 788-797. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406008.htmYun L, Cao Z C. Hydrocar bonen rich ment pattern and exploration potential of the Ordovician in Shunnan Area, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 788-797 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406008.htm [12] 陈红汉, 鲁子野, 曹自成, 等. 塔里木盆地塔中地区北坡奥陶系热液蚀变作用[J]. 石油学报, 2016, 37(1): 43-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601005.htmChen H H, Lu Z Y, Cao Z C, et al. Hydrothermal alteration of Ordovician reservoir in northeast ernslope of Tazhong uplift, Tarim Basin[J]. Acta Petrolei Sinica, 2016, 37(1): 43-63 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601005.htm [13] Lai J, Wang G W, Chai Y, et al. Prediction of diagenetic facies using well logs: Evidences from Upper Triassic Yanchang Formation Chang 8 and standstones in Jiyuan region, Ordos Basin, China[J]. Oil & Gas Science and Technology, 2016, 71(3): 34. [14] Cui Y F, Wang G W, Jones S J, et al. Prediction of diagenetic facies using well logs: A case study from the Upper Triassic Yanchang Formation, Ordos Basin, China[J]. Marine and Petroleum Geology, 2017, 81: 50-65. doi: 10.1016/j.marpetgeo.2017.01.001 [15] 邹才能, 陶士振, 周慧, 等. 成岩相的形成、分类与定量评价方法[J]. 石油勘探与开发, 2008, 35(5): 526-540. doi: 10.3321/j.issn:1000-0747.2008.05.002Zou C N, Tao S Z, Zhou H, et al. Genesis, classification and evaluation method of diagenetic facies[J]. Petroleum Exploration and Development, 2008, 35(5): 526-540 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2008.05.002 [16] 赖锦, 王贵文, 王书南, 等. 碎屑岩储层成岩相测井识别方法综述及研究进展[J]. 中南大学学报: 自然科学版, 2013, 44(12): 4942-4953. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201312025.htmLai J, Wang G W, Wang S N, et al. Overiew and research progress in logging recognition method of clastic reservoir diagenetic facies[J]. Journal of Central South University: Science and Technology, 2013, 44(12): 4942-4953 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201312025.htm [17] 张凯逊, 白国平, 王权, 等. 致密砂岩储集层成岩相的测井识别与评价: 以冀中坳陷饶阳凹陷古近系沙河街组三段为例[J]. 古地理学报, 2016, 18(6): 921-938. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201606003.htmZhang K X, Bai G P, Wang Q, et al. Wire line log response-based recognition and evaluation of diagenetic facies study of sandstone reservoirs: A case study of the Member 3 of Paleogene Shahejie Formation in Raoyang sag of Jizhong depression[J]. Journal of Palaeogeography, 2016, 18(6): 921-938(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201606003.htm [18] Ozkan A, Cumella S P, Milliken K L, et al. Predication of lithofacies and reservoir quality using well logs, Late Cretaceous Williams Fork Formtion, Mamm Creek field, Piceance Basin, Colorado[J]. AAPG Bulletin, 2011, 95(10): 1699-1723. doi: 10.1306/01191109143 [19] 任建业, 张俊霞, 阳怀忠, 等. 塔里木盆地中央隆起带断裂系统分析[J]. 岩石学报, 2011, 27(1): 219-230. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101015.htmRen J Y, Zhang J X, Yang H Z, et al. Analysis of fault systems in the Central uplift, Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(1): 219-230 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101015.htm [20] 郑剑锋, 沈安江, 刘永福, 等. 塔里木盆地寒武-奥陶系白云岩成因及分布规律[J]. 新疆石油地质, 2011, 32(6): 600-604. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201106010.htmZheng J F, Shen A J, Liu Y F, et al. Genesis and distribution of the Cambro-Ordovician dolomite in Tarim Basin[J]. Xinjiang Petroleum Geology, 2011, 32(6): 600-604 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201106010.htm [21] 贾振远, 李之淇. 碳酸盐岩沉积相和沉积环境[M]. 武汉: 中国地质大学出版社, 1989.Jia Z Y, Li Z Q. Carbonate sedimentary facies and environment[M]. Wuhan: China University of Geoscience Press, 1989 (in Chinese). [22] 胡明毅, 胡忠贵, 李思田, 等. 塔中地区奥陶系白云岩岩石地球化学特征及成因机理分析[J]. 地质学报, 2011, 85(12): 2060-2069. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201112009.htmHu M Y, Hu Z G, Li S T, et al. Geochemical characteristics and genetic mechanism of the Ordovician dolostone in the Tazhong area, Tarim Basin[J]. Acta Geologica Sinica, 2011, 85(12): 2060-2069 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201112009.htm [23] 杨威, 魏国齐, 金惠, 等. 碳酸盐岩成岩相研究方法及其应用: 以扬子地块北缘飞仙关组鲕滩储层为例[J]. 岩石学报, 2011, 27(3): 749-756. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201103015.htmYang W, Wei G Q, Jin H, et al. Methods for diagenetic facies research on carbonate rocks and its application: Example from oolitic beach reservoir of the Feixianguan Formation in the northern margin of Yangtze block[J]. Acta Petrologica Sinica, 2011, 27(3): 749-756 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201103015.htm [24] 李百强, 张小莉, 王起琮, 等. 低渗-特低渗白云岩储层成岩相分析及测井识别: 以伊陕斜坡马五段为例[J]. 岩性油气藏, 2019, 31(5): 70-83. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201905008.htmLi B Q, Zhang X L, Wang Q C, et al. Analysis and logging identification of diagenetic facies of dolomite reservoir with low and ultra: Low permeability: a case study from Ma 5 member in Yishan slope, Ordos Basin[J]. Lithologic Reservoirs, 2019, 31(5): 70-83(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201905008.htm [25] 王起琮, 张阳, 肖玲. 鄂尔多斯盆地奥陶系碳酸盐岩成岩相碳、氧稳定同位素特征[J]. 石油与天然气地质, 2013, 34(5): 652-658. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201305012.htmWang Q C, Zhang Y, Xiao L. Carbon and oxygen stable isotopic features of diagenetic facies of Ordovician carbonate rocks in Ordos Basin[J]. Oil & Gas Geology, 2013, 34(5): 652-658 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201305012.htm [26] 王起琮, 魏巍, 赵静, 等. 鄂尔多斯盆地奥陶系白云岩成岩相地球化学特征[J]. 古地理学报, 2017, 19(5): 849-864. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201705009.htmWang Q C, Wei W, Zhao J, et al. Geochemical characteristics of dolostone diagenetic facies of the Ordovician in Ordos Basin[J]. Journal of Palaeogeography, 2017, 19(5): 849-864 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201705009.htm [27] 李百强, 王起琮, 张小莉, 等. 白云岩成岩相与地球化学特征: 以鄂尔多斯盆地中东部马家沟组马五5-马五1亚段为例[J]. 沉积学报, 2018, 36(3): 608-616. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201803016.htmLi B Q, Wang Q C, Zhang X L, et al. Diageneticfacies and its geochemical characteristics of dolomite: A case study of Ma55-Ma51 Sub-members of Majiagou Formation in central-eastern Ordos Basin[J]. Acta Sedimentologica Sinica, 2018, 36(3): 608-616(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201803016.htm [28] 王起琮, 闫佐, 宁博, 等. 鄂尔多斯盆地奥陶系马家沟组豹皮灰岩特征及其成因[J]. 古地理学报, 2016, 18(1): 39-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201601003.htmWang Q C, Yan Z, Ning B, et al. Characteristics and genesis of leopard limestone of the Ordovician Majiagou Formation in Ordos Basin[J]. Journal of Palaeogeography, 2016, 18(1): 39-48 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201601003.htm [29] 刘梦瑶, 齐永安, 史云鹤, 等. 华北寒武纪-奥陶纪豹皮状碳酸盐岩系生物扰动成因[J]. 沉积学报, 2020, 38(1): 91-103. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202001008.htmLiu M Y, Qi Y A, Shi Y H, et al. Formation mechanism of cambrian-ordovician bioturbated dolomites in north China[J]. Acta Sedimentologica Sinica, 2020, 38(1): 91-103 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202001008.htm [30] Jones G D, Smart P L, Whitaker F F, et al. Numerical modeling of refux dolomitization in the Grosmont Platform Complex (Upper Devonian), western Canada Sedimentary Basin[J]. AAPG Bulletin, 2003, 87(8): 1273-1298. doi: 10.1306/03260302007 [31] 赵文智, 沈安江, 乔占峰, 等. 白云岩成因类型、识别特征及储集空间成因[J]. 石油勘探与开发, 2018, 45(6): 923-935. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806002.htmZhao W Z, Shen A J, Qiao Z F, et al. Genetic types and distinguished characteristics of dolomite and the origin of dolomite reservoirs[J]. Petroleum Exploration and Development, 2018, 45(6): 923-935 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806002.htm [32] 黄思静. 碳酸盐岩的成岩作用[M]. 北京: 地质出版社, 2010.Huang S J. Carbonate diagenesis[M]. Beijing: Geological Publishing House, 2010(in Chinese). [33] 张春宇, 管树巍, 吴林, 等. 塔西北地区下寒武统碳酸盐岩地球化学特征及其古环境意义: 以舒探1井为例[J]. 地质科技通报, 2021, 40(5): 99-111. doi: 10.19509/j.cnki.dzkq.2021.0508Zhang C Y, Guan S W, Wu L, et al. Geochemical characteristics and its paleo-environmental and its significance of the Lower Cambrian carbonate in the northwestern Tarim Basin: A case study of Well Shutan-1[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 99-111 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0508 [34] 陈少伟, 刘建章. 含油气盆地微观裂缝脉体期次、成因与流体演化研究进展及展望[J]. 地质科技通报, 2021, 40(4): 81-92. doi: 10.19509/j.cnki.dzkq.2021.0426Chen S W, Liu J Z. Researchprogress and prospects of the stages, genesis and fluid evolution of micro-fracture veins in petroliferous basins[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 81-92 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0426 [35] 乔占峰, 沈安江, 郑剑锋, 等. 塔里木盆地下奥陶统白云岩类型及其成因[J]. 古地理学报, 2012, 14(1): 21-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201201006.htmQiao Z F, Shen A J, Zheng J F, et al. Classification and origin of the Lower Ordovician dolostone in Tarim Basin[J]. Journal of Palaeogeography, 2012, 14(1): 21-32 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201201006.htm [36] 张庆玉, 梁彬, 曹建文, 等. 塔里木盆地轮古7井区以东奥陶系古岩溶储层碳氧同位素地球化学特征研究[J]. 地质科技情报, 2015, 34(2): 52-56, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502008.htmZhang Q Y, Liang B, Cao J W, et al. Research of geochemistry characteristics of carbon and oxygen isotopes of ordovician paleokarst reservoir in the East of Lungu-7, North Tarim Basin[J]. Geological Science and Technology Information, 2015, 34(2): 52-56, 77 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502008.htm [37] 胡以铿. 地球化学中的多元分析[M]. 武汉: 中国地质大学出版社, 1991.Hu Y Q. Multivariate analysis in geochemistry[M]. Wuhan: China University of Geoscience Press, 1991(in Chinese). [38] Derry L A, Keto L S, Jacobsen S B, et al. Sr isotope variations in Upper Proterozoic carbonates from Svalbard and East Greenland[J]. Geochim. Cosmochim. Acta, 1989, 53: 2331-2339. doi: 10.1016/0016-7037(89)90355-4 [39] 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984.Liu Y J, Cao L M, Li Z L, et al. Element geochemistry[M]. Beijing: Science Press, 1984(in Chinese). [40] 黄擎宇, 张哨楠, 丁晓琪, 等. 鄂尔多斯盆地西南缘奥陶系马家沟组白云岩成因研究[J]. 石油实验地质, 2010, 32(2): 147-153. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201002009.htmHuang Q Y, Zhang S N, Ding X Q, et al. Origin of dolomite of Ordovician Majiagou Formation, western and southern margin of the Ordos Basin[J]. Petroleum Geology& Experiment, 2019, 31(5): 70-83 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201002009.htm [41] 赫云兰, 刘波, 秦善. 白云石化机理与白云岩成因问题研究[J]. 北京大学学报: 自然科学版, 2010, 46(6): 1010-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201006023.htmHao Y L, Liu B, Qin S. Study on the dolomitization and dolostone genesis[J]. Acta Scientiarum Naturalium Universities Pekinensis, 2010, 46(6): 1010-1020 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201006023.htm [42] 刘红光, 刘波, 吴双林, 等. 塔里木盆地玉北地区蓬莱坝组白云岩类型及成因[J]. 岩石学报, 2017, 33(4): 1233-1242. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201704016.htmLiu H G, Liu B, Wu S L, et al. The types and origin of the Penglaiba Formation dolomite in the Yubei area, Tarim Basin[J]. Acta Petrologica Sinica, 2017, 33(4): 1233-1242 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201704016.htm [43] 冯增昭, 鲍志东, 吴茂炳, 等. 塔里木盆地奥陶纪岩相古地理[J]. 古地理学报, 2007, 9(5): 447-460. doi: 10.3969/j.issn.1671-1505.2007.05.003Feng Z Z, Bao Z D, Wu M B, et al. Lithofacies palaeogeography of the Ordovician in Tarim area[J]. Journalof Palaeography, 2007, 9(5): 447-460 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1505.2007.05.003 [44] 李长海, 赵伦, 刘波, 等. 碳酸盐岩裂缝研究进展及发展趋势[J]. 地质科技通报, 2021, 40(4): 31-48. doi: 10.19509/j.cnki.dzkq.2021.0403Li C H, Zhao L, Liu B, et al. Research status and development trend of fractures in carbonate reservoir[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 31-48(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0403