留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水泥固化剂提高风积沙承载性能试验

盛明强 邹淳 乾增珍 鲁先龙

盛明强, 邹淳, 乾增珍, 鲁先龙. 水泥固化剂提高风积沙承载性能试验[J]. 地质科技通报, 2022, 41(2): 147-153. doi: 10.19509/j.cnki.dzkq.2021.0259
引用本文: 盛明强, 邹淳, 乾增珍, 鲁先龙. 水泥固化剂提高风积沙承载性能试验[J]. 地质科技通报, 2022, 41(2): 147-153. doi: 10.19509/j.cnki.dzkq.2021.0259
Sheng Mingqiang, Zou Chun, Qian Zengzhen, Lu Xianlong. Experiments on the bearing capacity of aeolian sand stabilized by cement stabilizers[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 147-153. doi: 10.19509/j.cnki.dzkq.2021.0259
Citation: Sheng Mingqiang, Zou Chun, Qian Zengzhen, Lu Xianlong. Experiments on the bearing capacity of aeolian sand stabilized by cement stabilizers[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 147-153. doi: 10.19509/j.cnki.dzkq.2021.0259

水泥固化剂提高风积沙承载性能试验

doi: 10.19509/j.cnki.dzkq.2021.0259
基金项目: 

国家自然科学基金项目 52069013

国家自然科学基金项目 52169027

国家电网公司科技项目 GC17201100065

详细信息
    作者简介:

    盛明强(1975—),男,讲师,主要从事地基基础及防灾减灾方面研究工作。E-mail: mqsheng@ncu.edu.cn

    通讯作者:

    鲁先龙(1972—),男,正高级工程师,主要从事输电线塔基础工程研究工作。E-mail: luxianlong@163.com

  • 中图分类号: TU43

Experiments on the bearing capacity of aeolian sand stabilized by cement stabilizers

  • 摘要: 沙漠风积沙稳定性差, 采用水泥作为固化剂进行风积沙固化, 是改善风积沙性质和实现风积沙资源化利用的有效手段。以取自内蒙古库布齐沙漠的风积沙为材料, 制备3%含水量的重塑风积沙, 掺入水泥固化剂并充分拌匀而形成固化风积沙, 开展水泥固化风积沙的抗剪、抗压和抗拔承载性能试验。结果表明, 水泥掺量对固化风积沙黏聚强度的提高程度要大于内摩擦角。含水量3%的风积沙掺入6%的水泥经28 d常温养护的固化风积沙无侧限抗压强度平均值为0.156 MPa。固化风积沙扩展基础抗拔荷载-位移曲线呈现初始弹性段至峰值荷载以及峰值荷载后破坏的两阶段脆性破坏特征。水泥固化提高风积沙抗拔承载性能效果显著, 且与基础底板尺寸、抗拔埋深及基础深宽比等因素有关。

     

  • 图 1  试验风积沙颗粒级配曲线

    Figure 1.  Particle size distribution curve of the aeolian sand

    图 2  风积沙及不同水泥掺量下固化风积沙直剪试验结果

    Figure 2.  Direct shear test results of aeolian sand and cement-stabilized aeolian sand with different cement percentages

    图 3  水泥固化风积沙无侧限抗压强度试验试件破坏情况

    Figure 3.  Damage of unconfined compressive tests of cement-stabilized aeolian sand

    图 4  水泥固化风积沙无侧限抗压强度试验结果

    Figure 4.  Distribution of unconfined compressive strength (UCS) for aeolian sand

    图 5  上拔试验装置与加载系统

    Figure 5.  Uplift experiment device and loading system

    图 6  试验基础抗拔荷载-位移曲线

    Figure 6.  Curve of basic uplift load-displacement

    图 7  抗拔基础极限承载随深宽比变化规律

    Figure 7.  Relationship between ultimate uplift resistance and ratio of embedment depth to width for all the tests

    图 8  抗拔破坏时地表裂缝形态与分布

    Figure 8.  Crack form and distribution of the ground surface at failure

    图 9  试验基础抗拔因子随深宽比变化规律

    Figure 9.  Variation laws of factors of basic uplift resistance with depth to width for all the tests

    表  1  风积沙和固化风积沙抗拔性能试验概况与结果

    Table  1.   Overview and results of uplift load test for model spread foundations embedded in aeolian sand and cement-stabilized aeolian sand

    回填料 D/m ht/m ht/D Tu/kN su/mm λu
    风积沙 0.30 0.30 1.00 2.58 1.03 6.59
    0.30 0.60 2.00 7.09 1.57 9.05
    0.30 0.90 3.00 12.40 8.45 10.56
    0.30 1.20 4.00 20.50 12.81 13.09
    0.30 1.50 5.00 29.20 19.84 14.92
    0.60 0.30 0.50 5.52 0.70 3.52
    0.60 0.60 1.00 11.97 1.90 3.82
    0.60 0.90 1.50 18.90 5.77 4.02
    0.60 1.20 2.00 29.50 10.73 4.71
    0.60 1.50 2.50 45.00 13.71 5.75
    0.90 0.60 0.67 21.60 1.40 3.07
    0.90 0.90 1.00 32.40 7.13 3.07
    0.90 1.20 1.33 47.80 7.62 3.39
    0.90 1.50 1.67 67.00 8.58 3.80
    固化风积沙 0.10 0.15 1.50 8.44 1.58 380.18
    0.10 0.25 2.50 10.86 2.13 293.51
    0.10 0.35 3.50 12.10 0.14 233.59
    0.20 0.30 1.50 22.18 1.44 124.89
    0.20 0.50 2.50 25.60 1.10 86.49
    0.20 0.70 3.50 27.64 6.53 66.70
    0.30 0.45 1.50 20.15 4.04 33.62
    0.30 0.75 2.50 39.47 1.64 39.51
    0.30 1.05 3.50 44.60 1.67 31.89
    注:D.基础底板边长;ht.抗拔埋深;ht/D.深宽比;Tu.抗拔基础的极限承载力;su.与Tu对应的位移;λu.抗拔因子
    下载: 导出CSV
  • [1] 乔建伟, 郑建国, 刘争宏. "一带一路"沿线特殊岩土分布与主要工程问题[J]. 灾害学, 2019, 34(增刊1): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU2019S1012.htm

    Qiao J W, Zheng J G, Liu Z H. Distribution of special rock one along "The belt and road initiative" and major engineering problems[J]. Disaster Science, 2019, 34(S1): 65-71(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU2019S1012.htm
    [2] 杜德斌, 马亚华. "一带一路": 中华民族复兴的地缘大战略[J]. 地理研究, 2015, 34(6): 1005-1014. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201506002.htm

    Du D B, Ma Y H. "The belt and road initiative": The geostrategy of the rejuvenation of the Chinese Nation[J]. Geographical Research, 2015, 34(6): 1005-1014(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201506002.htm
    [3] 陈正汉, 郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm

    Chen Z H, Guo N. Recent progress in mechanics and engineering application of unsaturated soil and special soil[J]. Geotechnical Mechanics, 2019, 40(1): 1-54(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm
    [4] 詹金林, 水伟厚, 梁永辉. 强夯法加固沙漠土地基处理试验研究[J]. 岩土力学, 2013, 30(增刊2): 489-493. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2106.htm

    Zhan J L, Shui W H, Liang Y H, et al. Experimental study on strengthening desert soil foundation by dynamic compaction[J]. Geotechnical Mechanics, 2013, 30(S2): 489-493(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2106.htm
    [5] Elipe M G M, López-Querol S. Aeolian sands: Characterization, options of improvement and possible employment in construction-The state-of-the-art[J]. Construction and Building Materials, 2014, 73: 728-739. doi: 10.1016/j.conbuildmat.2014.10.008
    [6] 刘文白, 周健, 苏跃宏, 等. 加筋风积砂扩展基础的抗拔试验与位移控制计算[J]. 岩土工程学报, 2003, 25(5): 562-566.

    Liu W B, Zhou J, Su Y H, et al. Uplift test and displacement control calculation of reinforced aeolian sand spread foundation[J]. Journal of Geotechnical Engineering, 2003, 25(5): 562-566(in Chinese with English abstract).
    [7] 乾增珍, 鲁先龙, 丁士君. 加筋风积沙地基直柱扩展基础抗拔试验[J]. 土木工程学报, 2011, 44(增刊): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2011S2008.htm

    Qian Z Z, Lu X L, Ding S J. Uplift test of straight column spread foundation on reinforced aeolian sand foundation[J]. Journal of Civil Engineering, 2011, 44(S): 29-32(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2011S2008.htm
    [8] 盛明强, 乾增珍, 田开平. 土体固化/稳定技术与固化土性质研究综述[J]. 江西水利科技, 2017, 10(5): 313-317. https://www.cnki.com.cn/Article/CJFDTOTAL-JXSK201705001.htm

    Sheng M Q, Qian Z Z, Tian K P. Review on soil solidification / stabilization technology and properties of solidified soil[J]. Jiangxi Hydraulic Science & Technology, 2017, 10(5): 313-317 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JXSK201705001.htm
    [9] 王忠凯, 徐光黎. 盾构施工对既有建(构)筑地基承载力影响及加固土体稳定性分析[J]. 地质科技通报, 2020, 38(4): 109-116. doi: 10.19509/j.cnki.dzkq.2020.0414

    Wang Z K, Xu G L. Influence of shield construction on bearing capacity of existing building (structure) foundation and stability analysis of reinforced soil[J]. Bulletin of Geological Science and Technology, 2020, 38(4): 109-116(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0414
    [10] 盛明强, 乾增珍, 鲁先龙. 水泥固化的风积沙地基扩展基础抗拔试验研究[J]. 岩土工程学报, 2017, 39(12): 2261-2267. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201712018.htm

    Sheng M Q, Qian Z Z, Lu X L. Experimental study on uplift resistance of expanded foundation of cement solidified aeolian sand foundation[J]. Geotechnical Mechanics, 2017, 39(12): 2261-2267(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201712018.htm
    [11] Mohamedzein Y E A, Al-Aghbari M Y. The use of municipal solid waste incinerator ash to stabilize dune sands[J]. Geotechnical and Geological Engineering, 2012, 30(6): 1335-1344.
    [12] 李维生, 张雁. 风积沙路用性能初探[J]. 交通科技, 2008, 26(1): 71-73. https://www.cnki.com.cn/Article/CJFDTOTAL-SKQB200801026.htm

    Li W S, Zhang Y. Preliminary study on road performance of aeolian sand[J]. Transportation Technology, 2008, 26(1): 71-73 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKQB200801026.htm
    [13] 王朝辉, 王选仓, 谭雪琴. 路用风积沙固化剂配制及其混合料性能[J]. 中南大学学报: 自然科学版, 2011, 42(1): 192-198. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201101033.htm

    Wang C H, Wang X C, Tan X Q. Preparation of road aeolian sand curing agent and its mixture properties[J]. Journal of Central South University: Natural Science Edition, 2011, 42(1): 192-198(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201101033.htm
    [14] 冉武平, 赵杰, 黄文薏, 等. 无机处治风积沙强度特性及工程应用研究[J]. 大连理工大学学报, 2018, 58(2): 141-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201802005.htm

    Ran W P, Zhao J, Huang W Y, et al. Study on strength characteristics and engineering application of inorganic treatment of aeolian sand[J]. Journal of Dalian University of Technology, 2018, 58(2): 141-146(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201802005.htm
    [15] 张彩利, 孟庆营, 韩森. 聚丙烯纤维在风积沙基层材料中的应用研究[J]. 中外公路, 2007, 27(2): 154-157. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200702040.htm

    Zhang C L, Meng Q Y, Han S. Application of polypropylene fiber in aeolian sand base material[J]. China and Foreign Highway, 2007, 27(2): 154-157(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200702040.htm
    [16] Asi I M, Al-Abdul W H I, Al-Amoudi O S B, et. al. Stabilization of dune sand using foamed asphalt[J]. Geotechnical Testing Journal, 2002, 25(2): 168-176.
    [17] Homauoni Z J, Yasrobi S S. Stabilization of dune sand with poly (methylmethacrylate) and polyvinyl acetate using dry and wet processing[J]. Geotechnical & Geological Engineering, 2011, 29(4): 571-579.
    [18] 鲁先龙, 程永锋, 丁士君. 风积沙地基工程性质及其输电线路基础抗拔设计[J]. 电力建设, 2010, 31(7): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJS201007011.htm

    Lu X L, Cheng Y F, Ding S J. Engineering properties of aeolian sand foundation and uplift design of transmission line foundation[J]. Electric Power Construction, 2010, 31(7): 46-50(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DLJS201007011.htm
    [19] 张晓奇, 胡新丽, 刘忠绪, 等. 呷爬滑坡滑带土蠕变特性及其稳定性[J]. 地质科技通报, 2020, 39(6): 145-153. doi: 10.19509/j.cnki.dzkq.2020.0604

    Zhang X Q, Hu X L, Liu Z X, et al. Creep properties and stability of sliding zone soil in Gapa landslid[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 145-153(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0604
    [20] 楚纯洁, 赵景波, 吴楠楠, 等. 毛乌素沙地晚第四纪地层特征与沙漠化研究综述[J]. 地质科技情报, 2017, 36 (5): 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705003.htm

    Chu C J, Zhao J B, Wu N N, et al. Review on Late Quaternary stratigraphic characteristics and desertification in Maowusu Sandy Land[J]. Geological Science and Technology Information, 2017, 36(5): 14-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705003.htm
    [21] 王旋, 胡新丽, 周昌, 等. 基于物理模型试验的滑坡-抗滑桩位移场变化特征[J]. 地质科技通报, 2020, 39(4): 103-108. doi: 10.19509/j.cnki.dzkq.2020.0413

    Wang X, Hu X L, Zhou C, et al. Model test on the displacement field characteristics of the landslide stabilizing piles[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 103-108(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0413
    [22] 邢康宇, 陆洪智, 陈耀春, 等. 成层土中轴横向受荷桩水平响应的非线性解[J]. 地质科技通报, 2021, 40(1): 166-174. doi: 10.19509/j.cnki.dzkq.2021.0112

    Xing K Y, Lu H Z, Chen Y C, et al. Nonlinear solutions of lateral response for piles under axial and lateral load embedded in layered soils[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 166-174(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0112
    [23] Consoli N C, Dalla R F, Fonini A. Plate load tests on cemented soil layers overlaying weaker soil[J]. Journal of Geotechnieal and Geoenvironmental Engineering, 2009, 135(12): 1846-1856.
    [24] Rattley M J, Lehane B M, Consoli N C, et al. Uplift of shallow foundations with cement-stabilised backfill[J]. Proceedings of the Institute of Civil Engineers-Geotechnical Engineering-Ground Improvement, 2008, 161(2): 103-110.
    [25] Consoli N C, Ruver C A, Schnaid F. Uplift performance of anchor plates embedded in cement-stabilized backfill[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(3): 511-517.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  835
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-30

目录

    /

    返回文章
    返回