留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

帕隆藏布江中游地壳剥露特征

涂继耀 季建清 钟大赉 周晶

涂继耀, 季建清, 钟大赉, 周晶. 帕隆藏布江中游地壳剥露特征[J]. 地质科技通报, 2022, 41(4): 292-300. doi: 10.19509/j.cnki.dzkq.2021.0260
引用本文: 涂继耀, 季建清, 钟大赉, 周晶. 帕隆藏布江中游地壳剥露特征[J]. 地质科技通报, 2022, 41(4): 292-300. doi: 10.19509/j.cnki.dzkq.2021.0260
Tu Jiyao, Ji Jianqing, Zhong Dalai, Zhou Jing. Crust erosion characteristics in the middle reach of the Purlung Tsangpo River[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 292-300. doi: 10.19509/j.cnki.dzkq.2021.0260
Citation: Tu Jiyao, Ji Jianqing, Zhong Dalai, Zhou Jing. Crust erosion characteristics in the middle reach of the Purlung Tsangpo River[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 292-300. doi: 10.19509/j.cnki.dzkq.2021.0260

帕隆藏布江中游地壳剥露特征

doi: 10.19509/j.cnki.dzkq.2021.0260
基金项目: 

中国地震局地球物理研究所基本科研业务费专项 DQJB20K37

国家自然科学基金项目 41603055

详细信息
    作者简介:

    涂继耀(1988-), 男, 助理研究员, 主要从事构造地质学与同位素年代学研究工作。E-mail: 406962923@qq.com

  • 中图分类号: P542;P597.3

Crust erosion characteristics in the middle reach of the Purlung Tsangpo River

  • 摘要:

    为揭示东喜马拉雅构造结演化过程, 也为未来可能重大工程建设提供基础地质资料, 对帕隆藏布江中游9块基岩样品进行了黑云母40Ar/39Ar测年, 并利用"Pecube"软件对该地区的地壳剥露速率进行半定量计算。样品黑云母40Ar/39Ar年龄范围为103~12.5 Ma, 对应地壳剥露速率范围为0.068~0.50 km/Ma。帕隆藏布江流域地壳剥露速率具有明显的东西差异特征, 下游(西段)地壳剥露速率显著高于中游(东段)。年龄数据及其模拟计算结果表明, 相对于东喜马拉雅构造结内部, 帕隆藏布江中游流域地壳剥露活动较弱且较稳定。雅鲁藏布江对帕隆藏布江的袭夺, 使得帕隆藏布下游(西段)重新进入河流演化幼年阶段, 河流快速下切剥蚀可能是导致该地区地壳剥露速率东西差异的原因。

     

  • 图 1  青藏高原印度板块大地构造框架图(a)以及东喜马拉雅构造结地质简图(b)

    Figure 1.  Generalized tectonic map of Indian Plate and Tibetan Plateau (a), Simplified geologic map of eastern Himalayan syntaxis (b)

    图 2  帕隆藏布江流域数字地貌及采样位置图

    Figure 2.  Digital geomorphological map of Purlung Tsangpo river basin and sample locations

    图 3  各样品黑云母40Ar/39Ar坪年龄图

    Figure 3.  40Ar/39Ar plateau ages of biotite concentrates

    图 4  黑云母40Ar/39Ar年龄高程关系

    Figure 4.  Relationship between biotite 40Ar/39Ar ages and elevations

    图 5  河流地貌形态样品年龄对比图

    a.样品实测年龄、最吻合剥露速率对比图;b.帕隆藏布江河流纵剖面图;c.帕隆藏布江不同位置河流横剖面图

    Figure 5.  River morphology and age contrast

    表  1  样品信息及年龄值

    Table  1.   Sample information and chronology data

    样品名 经度 纬度 海拔/m 岩性 黑云母40Ar/39Ar坪年龄/Ma 2σ误差/Ma MSWD
    11318-01 E96.053° N29.735° 3 067 闪长岩 100.14 0.82 0.32
    11318-02 E96.046° N29.731° 3 090 闪长岩 102.57 0.63 0.38
    11318-03 E95.985° N29.753° 2 962 闪长岩 76.23 0.40 0.91
    11318-04 E95.916° N29.784° 2 896 闪长岩 47.65 0.40 0.17
    11318-05 E95.835° N29.811° 2 820 闪长岩 36.61 0.60 0.61
    11318-06 E95.788° N29.837° 2 752 闪长岩 20.87 0.22 0.16
    11318-07 E95.679° N29.898° 2 716 闪长岩 22.19 0.27 0.82
    11318-10 E95.617° N29.907° 2 680 闪长岩 23.25 0.92 1.03
    11318-11 E95.401° N29.937° 2 558 片麻岩 12.49 0.69 0.19
    下载: 导出CSV

    表  2  各模拟系列信息及计算结果

    Table  2.   Information of several simulation series and calculate results

    模拟系列 经度范围 纬度范围 对应样品编号 模拟起始时间/Ma 最吻合剥露速率/(km·Ma-1) 最吻合计算年龄/Ma 实测年龄/Ma
    1 E96.02°~96.08° N29.6°~29.9° 11318-01, 02 110 0.068 101 100.14,102.57
    2 E95.95°~96.02° N29.6°~29.9° 11318-03 90 0.09 76 76.23
    3 E95.88°~95.95° N29.6°~29.9° 11318-04 60 0.14 48 47.65
    4 E95.81°~95.88° N29.6°~29.9° 11318-05 50 0.18 37 36.61
    5 E95.50°~95.81° N29.7°~30.0° 11318-06, 07, 10 30 0.30 22 20.87,22.19,23.25
    6 E95.30°~95.50° N29.8°~30.1° 11318-11 20 0.50 12 12.49
    下载: 导出CSV
  • [1] Burg J P, Nievergelt P, Oberli F, et al. The Namche Barwa syntaxis: Evidence for exhumation related to compressional crusta folding[J]. Journal of Asian Earth Sciences, 1998, 16(2/3): 239-252.
    [2] Zeitler P K, Meltzer A S, Brown L, et al. Tectonics and topographic evolution of Namche Barwa and the easternmost Lhasa block, Tibet[J]. Special Papers of the Geological Society of America, 2014, 507: 23-58.
    [3] Tu J Y, Ji J Q, Sun D X, et al. Thermal structure, rock exhumation, and glacial erosion of the Namche Barwa Peak, constraints from thermochronological data[J]. Journal of Asian Earth Sciences, 2015, 105: 223-233. doi: 10.1016/j.jseaes.2015.03.035
    [4] Gong J F, Ji J Q, Zhou J, et al. Late Miocene thermal evolution of the eastern Himalayan syntaxis as constrained by biotite40Ar/39Ar thermochronology[J]. The Journal of Geology, 2015, 123(4): 369-384. doi: 10.1086/682951
    [5] King G E, Herman F, Guralnik B. Northward migration of the eastern Himalayan syntaxis revealed by OSL thermochronometry[J]. Science, 2016, 353: 800-804. doi: 10.1126/science.aaf2637
    [6] Yang R, Herman F, Fellin M G, et al. Exhumation and topographic evolution of the Namche Barwa Syntaxis, eastern Himalaya[J]. Tectonophysics, 2018, 722: 43-52. doi: 10.1016/j.tecto.2017.10.026
    [7] Yin A, Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280. doi: 10.1146/annurev.earth.28.1.211
    [8] Yin A. Cenozoic tectonic evolution of the Himalayan orogen as constrained byalong-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews, 2006, 76(1): 1-131.
    [9] Chung S L, Chu M F, Zhang Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations inpost-collisional magmatism[J]. Earth-Science Reviews, 2005, 68(3): 173-196.
    [10] Wen D R, Chung S L, Song B, et al. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications[J]. Lithos, 2008, 105(1): 1-11.
    [11] Wen D R, Liu D, Chung S L, et al. Zircon SHRIMP U-Pb ages of theGangdese Batholith and implications for Neotethyan subduction in southern Tibet[J]. Chemical Geology, 2008, 252(3/4): 191-201.
    [12] 章振根, 刘玉海, 王天武, 等. 南迦巴瓦峰地区地质[M]. 北京: 科学出版社, 1992.

    Zhang Z G, Liu Y H, Wang T W, et al. Geology of the Namche Barwa region[M]. Beijing: Chinese Science Press, 1992 (in Chinese).
    [13] Zhang Z, Dong X, Santosh M, et al. Petrology and geochronology of the Namche Barwa complex in the eastern Himalayan syntaxis, Tibet: Constraints on the origin and evolution of the north-eastern margin of the Indian Craton[J]. Gondwana Research, 2012, 21(1): 123-137. doi: 10.1016/j.gr.2011.02.002
    [14] Ding L, Zhong D L, Yin A, et al. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa)[J]. Earth and Planetary Science Letters, 2001, 192(3): 423-438. doi: 10.1016/S0012-821X(01)00463-0
    [15] 钟大赉, 丁林. 西藏南迦巴瓦峰地区发现高压麻粒岩[J]. 科学通报, 1995, 40(14): 1343. doi: 10.3321/j.issn:0023-074X.1995.14.029

    Zhong D L, Ding L. High pressure granulite found in the Namche Barwa region Tibet[J]. Chinese Science Bulletin, 1995, 40(14): 1343 (in Chinese with English abstract). doi: 10.3321/j.issn:0023-074X.1995.14.029
    [16] 丁林, 钟大赉. 西藏南迦巴瓦峰地区高压麻粒岩相变质作用特征及其构造地质意义[J]. 中国科学: D辑, 1999, 29(5): 385-397. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199905000.htm

    Ding L, Zhong D L. High pressure granulite facies metamorphism characteristics and tectonic geological significance in the Namche Barwa region, Tibet[J]. Science in China: Series D, 1999, 29(5): 385-397 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199905000.htm
    [17] Liu Y, Massonne H J, Siebel W, et al. Geological aspects of the eastern Himalayan syntaxis: New constraints from structural, petrologic and zircon SHRIMP data[M]//Saklani P S E. Himalaya: Geological aspects. New Delhi: Satish Serial Publishing House, 2006.
    [18] Booth A L, Zeitler P K, Kidd W, et al. U-Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa area[J]. American Journal of Science, 2004, 304(10): 889-929. doi: 10.2475/ajs.304.10.889
    [19] Zhang J J, Ji J Q, Zhong D L, et al. Structural pattern of eastern Himalayan syntaxis in Namjagbarwa and its formation process[J]. Science in China Series D: Earth Sciences, 2004, 47(2): 138-150. doi: 10.1360/02yd0042
    [20] 张进江, 季建清, 钟大赉, 等. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨[J]. 中国科学: D辑, 2003, 33(4): 373-383. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200304009.htm

    Zhang J J, Ji J Q, Zhong D L, et al. Structural pattern of eastern Himalayan syntaxis in Namjagbarwa and its formation process[J]. Science in China: Series D, 2003, 33(4): 373-383 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200304009.htm
    [21] Lee H Y, Chung S L, Wang J R, et al. Miocene Jiali faulting and its implications for Tibetan tectonic evolution[J]. Earth and Planetary Science Letters, 2003, 205(3): 185-194.
    [22] Chiu H Y, Chung S L, Wu F Y, et al. Zircon U-Pb and Hf isotopic constraints from easternTranshimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet[J]. Tectonophysics, 2009, 477: 3-19. doi: 10.1016/j.tecto.2009.02.034
    [23] 央金拉姆, 季建清, 徐芹芹, 等. 藏东南帕隆藏布现今河流地貌特征及其晚第四纪演化[J]. 地质科学, 2019, 54(4): 1062-1084.

    Yungchen L, Ji J Q, Xu Q Q, et al. Fluvial geomorphological characteristics and its evolution of the Parlung Zangbo in southeast Tibet[J]. Chinese Journal of Geology, 2019, 54(4): 1062-1084 (in Chinese with English abstract).
    [24] Baksi A K, Archibald D A, Farrar E. Intercalibration of 40Ar/39Ar dating standards[J]. Chemical Geology, 1996, 129(3): 307-324.
    [25] Staudacher T, Jessberger E K, Dorflinger D, et al. A refined ultrahigh-vacuum furnace for rare gas analysis[J]. Journal of Physics E: Scientific Instruments, 1978, 11(8): 781. doi: 10.1088/0022-3735/11/8/019
    [26] Steiger R H, Jäger E. Subcommission on geochronology: Convention on the use of decay constants in geo-and cosmochronology[J]. Earth and Planetary Science Letters, 1977, 36: 359-362. doi: 10.1016/0012-821X(77)90060-7
    [27] Braun J. Pecube: A new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography[J]. Computers & Geosciences, 2003, 29(6): 787-794.
    [28] Braun J, van der Beek P, Valla P, et al. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE[J]. Tectonophysics, 2012, 524/525(2): 1-28.
    [29] Herman F, Copeland P, Avouac J P, et al. Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B06407): 1-38.
    [30] Craw D, Koons P O, Zeitler P K, et al. Fluid evolution and thermal structure in the rapidly exhuming gneiss complex of NamcheBarwa-Gyala Peri, eastern Himalayan syntaxis[J]. Journal of Metamorphic Geology, 2005, 23(9): 829-845.
    [31] 田单, 李长安. 清江上游河流发展过程与袭夺模式[J]. 地质科技情报, 2014, 33(1): 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201401013.htm

    Tian D, Li C A. River development process and capture model in Upper Qingjiang Basin[J]. Geological Science and Technology Information, 2014, 33(1): 80-84 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201401013.htm
    [32] 连志鹏, 徐勇, 付圣, 等. 采用多模型融合方法评价滑坡灾害易发性: 以湖北省五峰县为例[J]. 地质科技通报, 2020, 39(3): 178-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202003022.htm

    Lian Z P, Xu Y, Fu S, et al. Landslide susceptibility assessment based on multi-model fusion method: A case study in Wufeng County, Hubei Province[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 178-186 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202003022.htm
    [33] 覃瀚萱, 桂蕾, 余玉婷, 等. 基于滑坡灾害预警分级的应急处置措施[J]. 地质科技通报, 2021, 40(4): 187-195. doi: 10.19509/j.cnki.dzkq.2021.0412

    Qin H X, Gui L, Yu Y T, et al. Emergency measures based on early warning classification of landslide[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 187-195 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0412
    [34] 黄健, 贺子城, 黄祥, 等. 基于地貌特征的滑坡堰塞坝形成敏感性研究[J]. 地质科技通报, 2021, 40(5): 253-262. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105026.htm

    Huang J, He Z C, Huang X, et al. Formation sensitivity of landslide dam based on geomorphic characteristics[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 253-262 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105026.htm
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  759
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回