留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

综合沉积正演与多点地质统计模拟辫状河三角洲: 以塔河T区为例

贺婷婷 谈心 段太忠 赵磊 张文彪 乔勇 刘彦锋

贺婷婷, 谈心, 段太忠, 赵磊, 张文彪, 乔勇, 刘彦锋. 综合沉积正演与多点地质统计模拟辫状河三角洲: 以塔河T区为例[J]. 地质科技通报, 2021, 40(3): 54-66. doi: 10.19509/j.cnki.dzkq.2021.0301
引用本文: 贺婷婷, 谈心, 段太忠, 赵磊, 张文彪, 乔勇, 刘彦锋. 综合沉积正演与多点地质统计模拟辫状河三角洲: 以塔河T区为例[J]. 地质科技通报, 2021, 40(3): 54-66. doi: 10.19509/j.cnki.dzkq.2021.0301
He Tingting, Tan Xin, Duan Taizhong, Zhao Lei, Zhang Wenbiao, Qiao Yong, Liu Yanfeng. Integrated sedimentary forward modeling and multipoint geostatistics in braided river delta simulation: A case from block T of Tahe Oilfield[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 54-66. doi: 10.19509/j.cnki.dzkq.2021.0301
Citation: He Tingting, Tan Xin, Duan Taizhong, Zhao Lei, Zhang Wenbiao, Qiao Yong, Liu Yanfeng. Integrated sedimentary forward modeling and multipoint geostatistics in braided river delta simulation: A case from block T of Tahe Oilfield[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 54-66. doi: 10.19509/j.cnki.dzkq.2021.0301

综合沉积正演与多点地质统计模拟辫状河三角洲: 以塔河T区为例

doi: 10.19509/j.cnki.dzkq.2021.0301
基金项目: 

国家科技重大专项 2016ZX05033-003-002

详细信息
    作者简介:

    贺婷婷(1987-), 女, 高级工程师, 主要从事油气藏精细描述、地热资源勘探评价研究。E-mail: htt10502@163.com

  • 中图分类号: P539.2

Integrated sedimentary forward modeling and multipoint geostatistics in braided river delta simulation: A case from block T of Tahe Oilfield

  • 摘要: 为有效提高三角洲沉积相模拟的精度,以塔河T区为例,应用地震、岩心及测井资料,通过定量评估可容纳空间、物源供给和沉积搬运之间复杂的关系,建立该地区辫状河三角洲砂体沉积正演模型,并将此转化为多点地质统计模拟的三维训练图像,进行研究区辫状河三角洲多点地质统计模拟。研究表明:辫状河三角洲砂体分布受沉积正演模拟控制参数影响,其中砂质供应体积分数、沉积物流入比例、水流载荷量及洪水期间隔均属于强敏感性参数,对研究区三角洲砂体分布影响较大;砂岩含量沉积正演模型体现了辫状河三角洲退积式沉积过程,符合研究区沉积特征,将其转化为三维训练图像,多点地质统计模拟结果在三维空间具有受训练图像约束的特征,体现了训练图像所反映的相带接触关系,并且与钻井认识一致。所提出的这种新的获取三角洲沉积体三维训练图像的方法,综合了沉积正演模拟与多点地质统计模拟的优势,取得了一定的应用效果,对类似沉积体三维地质建模具有一定的借鉴作用。

     

  • 图 1  模拟目的段取心井短期基准面旋回划分

    Figure 1.  Short-term base-level cycle division of the simulation core well

    图 2  研究区沉积数值模拟路线图

    Figure 2.  Sedimentary numerical simulation workflow scheme of the study area

    图 3  研究区初始基底水深图

    Figure 3.  Bathymetry map of the study area

    图 4  物源砂岩供应体积分数敏感性模拟结果

    Figure 4.  Sensitivity simulation result of the percentage of sandstone supply

    图 5  水流载荷量敏感性模拟结果

    Figure 5.  Sensitivity simulation result of current load quantity

    图 6  短期高能期间沉积物流入比例敏感性模拟结果

    Figure 6.  Sensitivity simulation result of the ratio of sediment flow in short-term high enery period

    图 7  短期高能期间洪水期间隔敏感性模拟结果

    Figure 7.  Sensitivity simulation result of the flood interval

    图 8  沉积模拟剖面与实钻剖面岩性分布及旋回性对比

    Figure 8.  Comparison of lithology distribution and cyclicity between sedimentary simulation section and the actual drilling section

    图 9  研究区砂岩沉积演化平面图

    Figure 9.  Sandstone sedimentary evolution in the study area

    图 10  开发层位模拟与实钻旋回性对比

    Figure 10.  Cycle comparison of simulation and actual drilling in the development formation

    图 11  手绘和沉积模拟训练图像建模结果对比

    Figure 11.  Comparison of modeling results of hand-drawn and sedimentary simulation training images

    图 12  辫状河三角洲三维训练图像空间分布特征

    Figure 12.  Braided delta training image viewed from 3D and fence

    图 13  目的层模拟结果纵向变化

    Figure 13.  Vertical evolution of the object formation

    图 14  实钻与模拟结果过井剖面相对比

    Figure 14.  Comparison between actual drilling and simulation results through well profile analysis

    表  1  沉积模拟厚度与井点厚度对比

    Table  1.   Contrast of sedimentary simulation thickness and well thickness

    井名 井点地层厚度/m 模拟地层厚度/m 误差/%
    T2 47.47 48.31 1.74
    T5 43.66 45.48 4
    T8 43.27 44.94 3.72
    T1 44.61 45.96 2.94
    T10 47.35 48.14 1.64
    T7 47.19 48.22 2.14
    T11 47.51 47.79 0.59
    下载: 导出CSV
  • [1] Burton R, Kendall C G S C, Lerche I. Out of our depth: On the impossibility of fathoming eustasy from the stratigraphic record[J]. Earth-Science Reviews, 1987, 24(4): 237-277. doi: 10.1016/0012-8252(87)90062-6
    [2] Chalker B E, Barnes D J, Dunlap W C, et al. Light and reef-building corals[J]. Interdisciplinary Science Reviews, 1988, 13(3): 222-237. doi: 10.1179/isr.1988.13.3.222
    [3] Bosscher H, Schlager W. Computer simulation of reef growth[J]. Sedimentology, 1992, 39(3): 503-512. doi: 10.1111/j.1365-3091.1992.tb02130.x
    [4] 裘怿楠, 贾爱林. 储层地质模型10年[J]. 石油学报, 2000, 21(4): 101-104. doi: 10.3321/j.issn:0253-2697.2000.04.019

    Qiu Y N, Jia A L. Development of geological reservoir modeling in past decade[J]. Acta Petrolei Sinica, 2000, 21(4): 101-104(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2000.04.019
    [5] 尹艳树, 吴胜和. 储层随机建模研究进展[J]. 天然气地球科学, 2006, 17(2): 210-216. doi: 10.3969/j.issn.1672-1926.2006.02.016

    Yin Y S, Wu S H. The progress of reservoir stochastic modeling[J]. Natural Gas Geoscience, 2006, 17(2): 210-216(in Chinese with English abstract). doi: 10.3969/j.issn.1672-1926.2006.02.016
    [6] 林承焰, 陈仕臻, 张宪国, 等. 多趋势融合的概率体约束方法及其在储层建模中的应用[J]. 石油学报, 2015, 36(6): 730-739. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201506010.htm

    Lin C Y, Chen S Z, Zhang X G, et al. Probability constraint method based on multiple trend integration and its application in reservoir modeling[J]. Acta Petrolei Sinica, 2015, 36(6): 730-739(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201506010.htm
    [7] 张文彪, 段太忠, 刘彦锋, 等. 定量地质建模技术应用现状与发展趋势[J]. 地质科技情报, 2019, 38(3): 264-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903029.htm

    Zhang W B, Duan T Z, Liu Y F, et al. Application status and development trend of quantitative geological modeling[J]. Geological Science and Technology Information, 2019, 38(3): 264-275(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903029.htm
    [8] 王恺其, 肖凡. 多点地质统计学的理论、方法、应用及发展现状[J]. 地质科技情报, 2019, 38(6): 256-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906031.htm

    Wang K Q, Xiao F. Multiple points geostatistics: A review of theories, methods and applications[J]. Geological Science and Technology Information, 2019, 38(6): 256-267(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906031.htm
    [9] Strebelle S, Journel A. Reservoir modeling using multiple-point statistics[C]. New Orleans: Society of Petroleum Engineers, 2001.
    [10] Cross T A. Applications of high-resolution sequence stratigraphy in petroleum exploration and pnouetion short course Notes[M]. [S. l. ]: Canadian Society of Petroleum Geologists, 1993: 290.
    [11] Cross T A. High-resolution stratigraphic correlation from the perspective of base-level cycles and sediment accommodation[C]//Preedings of Northwestern European sequence stratigraphy congree, [S. l. ]: [s. n. ], 1994, 105-123.
    [12] 刘鸿博, 周文, 郑军, 等. 塔河9区三叠系下油组油藏精细地质建模[J]. 物探与化探, 2010, 34(2): 242-245. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201002027.htm

    Liu H B, Zhou W, Zheng J, et al. 3D fine geological modeling of Triassic lower oil formation in 9th block of the Tahe oil field[J]. Geophysical & Geochemical Exploration, 2010, 34(2): 242-245(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201002027.htm
    [13] 何文军, 刘敏珠, 吴俊军, 等. 准噶尔盆地阜东斜坡阜19井区三叠系韭菜园子组沉积正演模拟[J]. 油气地质与采收率, 2018, 25(6): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201806002.htm

    He W J, Liu M Z, Wu J J, et al. Forward modeling of sedimentation in the Triassic Jiucaiyuanzi formation in well Fu19 area of the Fudong slope, Junggar basin[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(6): 7-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201806002.htm
    [14] 吕明, 王颖, 徐徽. 沉积模拟方法在Bonaparte盆地的应用[J]. 中国海上油气, 2010, 22(2): 83-90. doi: 10.3969/j.issn.1673-1506.2010.02.003

    Lü M, Wang Y, Xu W. An application of sedimentation simulation in Bonaparte basin[J]. China Offshore Oil and Gas, 2010, 22(2): 83-90(in Chinese with English abstract). doi: 10.3969/j.issn.1673-1506.2010.02.003
    [15] 王颖, 吕明, 王晓州. 数值沉积模拟在澳大利亚W区块沉积储层研究中的应用[J]. 山东科技大学学报: 自然科学版, 2012, 31(2): 10-16. doi: 10.3969/j.issn.1672-3767.2012.02.002

    Wang Y, Lü M, Wang X Z. Application of numerical simulation in research of sedimentary reservoirs of W zone in Australia[J]. Journal of Shandong University of Science and Technology (Natural Science), 2012, 31(2): 10-16(in Chinese with English abstract). doi: 10.3969/j.issn.1672-3767.2012.02.002
    [16] 王启明, 杜晓峰, 加东辉, 等. 辽中凹陷东二下亚段湖底扇数值沉积模拟研究[J]. 石油地质与工程, 2015, 29(4): 15-18. doi: 10.3969/j.issn.1673-8217.2015.04.005

    Wang Q M, Du X F, Jia D H, et al. Numerical simulation study of sub-lacustrine fan sedimentation in lower Dong-Ⅱmember of Liaozhong sag[J]. Petroleum Geology and Engineering, 2015, 29(4): 15-18(in Chinese with English abstract). doi: 10.3969/j.issn.1673-8217.2015.04.005
    [17] 魏洪涛. 辽中凹陷北部东二下亚段湖底扇沉积数值模拟及应用[J]. 岩性油气藏, 2015, 27(5): 183-188. doi: 10.3969/j.issn.1673-8926.2015.05.031

    Wei H T. Numerical simulation of sub-lacusyrine fan deposition of lower Ed2 formation and its application in northern Liaozhong depression[J]. Lithologic Reservoirs, 2015, 27(5): 183-188(in Chinese with English abstract). doi: 10.3969/j.issn.1673-8926.2015.05.031
    [18] 徐伟, 房磊, 张新叶, 等. 乌干达K油田扇三角洲沉积正演模拟与应用[J]. 地球科学, 2019, 44(2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201902014.htm

    Xu W, Fang L, Zhang X Y, et al. Sedimentary forward simulation and application of fan delta in K oil field in Uganda[J]. Earth Science, 2019, 44(2): 1-11(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201902014.htm
    [19] 尹艳树, 张昌民, 李玖勇, 等. 多点地质统计学研究进展与展望[J]. 古地理学报, 2011, 13(2): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201102015.htm

    Yin Y S, Zhang C M, Liu J Y, et al. Progress and prospect of multiple-point geostatistics[J]. Journal of Palaeogeography, 2011, 13(2): 11-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201102015.htm
    [20] 吴胜和, 李文克. 多点地质统计学-理论、应用与展望[J]. 古地理学报, 2005, 7(1): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200501014.htm

    Wu S H, Li W K. Multiple-point geostatistics: theory, application and perspective[J]. Journal of Palaeogeography, 2005, 7(1): 11-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200501014.htm
    [21] 冯德永, 王芳芳. 多属性约束的多点地质统计方法在民丰洼陷岩相预测中的应用[J]. 地质科技情报, 2017, 36(6): 273-277. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201706033.htm

    Feng D Y, Wang F F. Lithofacies prediction based on multiattribute and multipoint geostatistics in Minfeng sag[J]. Geological Science and Technology Information, 2017, 36(6): 273-277(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201706033.htm
    [22] 骆杨, 赵彦超. 多点地质统计学在河流相储层建模中的应用[J]. 地质科技情报, 2008, 27(3): 68-71. doi: 10.3969/j.issn.1000-7849.2008.03.010

    Luo Y, Zhao Y C. Application of multiple-point geostatistics in fluvial reservoir stochastic modeling[J]. Geological Science and Technology Information, 2008, 27(3): 68-71(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2008.03.010
    [23] 陈麒玉, 刘刚, 何珍文, 等. 面向地质大数据的结构-属性一体化三维地质建模技术现状与展望[J]. 地质科技通报, 2020, 39(4): 51-57. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9999.shtml

    Chen Q Y, Liu G, He Z W, et al. Current situation and prospect of structure-attribute integrated 3D geological modeling technology for geological big data[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 51-57(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract9999.shtml
    [24] 张文彪, 段太忠, 刘彦锋, 等. 综合沉积正演与多点地质统计模拟碳酸盐岩台地: 以巴西Jupiter油田为例[J]. 石油学报, 2017, 38(8): 925-934. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201708007.htm

    Zhang W B, Duan T Z, Liu Y F, et al. Integrated sedimentary forward modeling and multipoint geostatistics in carbonate plantform simulation: A case study of Jupiter oilfield in Brazil[J]. Acta Petrolei Sinica, 2017, 38(8): 925-934(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201708007.htm
    [25] Modica C J, Brush E R. Postrift sequence stratigraphy, paleo-geography, and fill history of the deep- water Santos Basin, off-shore southeast Brazil[J]. AAPG Bulletin, 2004, 88(7): 923-945. doi: 10.1306/01220403043
    [26] 雷燕平, 林畅松, 刘景彦, 等. 海拉尔盆地贝尔凹陷下白垩统层序地层与沉积体系分析[J]. 石油地质与工程, 2007, 21(5): 11-15. doi: 10.3969/j.issn.1673-8217.2007.05.004

    Lei Y P, Lin C S, Liu J Y, et al. Research of depositional system and sequence stratigraphy in lower Cretaceous in Beier sag, Hailaer basin[J]. Petroleum Geology and Engineering, 2007, 21(5): 11-15(in Chinese with English abstract). doi: 10.3969/j.issn.1673-8217.2007.05.004
    [27] 郭建华, 刘辰生, 朱锐. 阿克库勒地区三叠系层序地层学及储集砂体成因类型[J]. 沉积学报, 2007, 25(2): 169-175. doi: 10.3969/j.issn.1000-0550.2007.02.002

    Guo J H, Liu C S, Zhu R. Sequence stratigraphy and sandbody genetric types of Triassic system in Akekule area[J]. Acta Sedimentologica Sinica, 2007, 25(2): 169-175(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2007.02.002
    [28] 熊天鹤. 泥质三角洲沉积特征及沉积过程模拟[D]. 大庆: 东北石油大学, 2018.

    Xiong T H. Sedimentary characteristics and simulation of deposition process of the muddy delta[D]. Daqing: Northeast Petroleum University, 2018(in Chinese with English abstract).
    [29] 王鹏飞, 叶小明, 霍春亮, 等. BZ油田古近系储层沉积过程数值模拟[J]. 断块油气田, 2017, 24(5): 604-607. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201705003.htm

    Wang P F, Ye X M, Huo C L, et al. Numerical simulation of sedimentary process for Paleogene reservoir in BZ oilfield[J]. Fault-Block Oil & Gas Field, 2017, 24(5): 604-607(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201705003.htm
    [30] Yin X D, Huang W H, Wang P F, et al. Sedimentary evolution of overlapped sand bodies in terrestrial faulted lacustrine basin: Insights from 3D stratigraphic forward modeling[J]. Marine and Petroleum Geology, 2017, 86: 1431-1443. doi: 10.1016/j.marpetgeo.2015.09.010
    [31] 曾灿. 辫状河沉积过程数值模拟[D]. 荆州: 长江大学, 2016.

    Zeng C. The numerical model of sedimentary processes in braided river[D]. Jingzhou: Yangtze University, 2016(in Chinese with English abstract).
    [32] Seard C, Borgomano J, Granjeon D, et al. Impact of environmental parameters on coral reef development and drowning: forward modeling of the last deglacial reefs from Tahiti(French Polynesia; IODP Expedition # 310)[J]. Sedimentology, 2013, 60(6): 1357-1388.
    [33] Riding R. Structure and composition of organic reefs and carbonate mud mounds: concepts and categories[J]. Earth-Science Reviews, 2002, 58(1/2): 163-231. http://www.sciencedirect.com/science/article/pii/S0012825201000897
    [34] Osleger D. Subtidal carbonate cycles: Implications for allocyclic vs. autocyclic controls[J]. Geology, 1991, 19(9): 917-920. doi: 10.1130/0091-7613(1991)019<0917:SCCIFA>2.3.CO;2
    [35] Tipper J C. Modeling carbonate platform sedimentation-lag comes naturally[J]. Geology, 1997, 25(6): 495-498. doi: 10.1130/0091-7613(1997)025<0495:MCPSLC>2.3.CO;2
    [36] Zhang T F. Incorporating geological conceptual models and interpretations into reservoir modeling using multiple-point geostatistics[J]. Earth Science Frontiers, 2008, 15(1): 26-35. doi: 10.1016/S1872-5791(08)60016-0
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  466
  • PDF下载量:  651
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-12

目录

    /

    返回文章
    返回