Water mobility of the main coal seam and its control of porosity and permeability in Jixi Basin
-
摘要: 水可动性是影响煤层气产出的重要因素,分析孔渗对水可动性的作用对鸡西盆地煤层气开发具有重要意义。以鸡西盆地不同矿区主力煤层为研究对象,开展了低场核磁共振(NMR)及渗透率实验,同时,结合称重测定煤样含水饱和度的方法,分析了煤层孔渗特征对煤中水可动性的影响。结果表明:①研究区煤样中吸附孔较为发育,平均占比为58.36%;渗流孔和裂隙发育程度相当,平均占比分别为21.23%和20.41%,且两者之间连通性较好;②确定了煤样达到束缚水状态的离心力为1.38 MPa,此压力下煤中可排出半径约0.1 μm半开放或开放孔隙中的可动水。煤样可动水饱和度为27.84%~60.87%,平均值37.86%;束缚水饱和度为39.13%~72.16%,平均值62.14%,可动水含量相对束缚水含量较低。随着离心压力的增加,可动水首先沿着大裂隙流动,随后经过渗流孔流出,束缚水主要存在于吸附孔中,需要克服较大的毛细管阻力,难以流动;③尽管煤样变质程度相近,但其内部水的可动性及赋存状态存在明显差异,这可能是造成同一区块不同煤层气井气水产出差异的原因之一;④研究区煤中半径>1 000 nm段孔喉越发育、煤岩渗透率越大,煤的可动水饱和度越高,水在其中越容易流出;煤中半径0~100 nm段孔喉越发育,煤的可动水饱和度越低,水在其中被束缚而难以流动。Abstract: Water mobility is an important factor affecting the production of coalbed methane. It is of great significance to analyze the effect of porosity and permeability on water mobility for the development of coalbed methane in Jixi Basin. In order to analyze the influence of porosity and permeability of coal reservoir on the water mobility, we performed low field NMR, permeability and water saturation experiments on the main coal seams of different mining areas in Jixi Basin.The results show that: ①Adsorption pores are relatively developed and the average proportion is 58.36%, while the seepage pores and fractures are similarly developed, with the average proportion of 21.23% and 20.41%, respectively.The seepage pores and fracture are well connected; ②The centrifugal force that makes the studied coal seam reach the bound water state is 1.38 MPa, under which the movable water can be discharged from half-open or open pores with a radius of more than 0.1 μm.By which the movable water saturation is 27.84%-60.87%, with an average of 37.86%; the irreducible water saturation is higher which is calculated as 39.13%-72.16%(av.62.14%).With the increase of pressure, the movable water flows first along the fracture, and then flows out through the seepage pores, while the irreducible water mainly existing in the adsorption pores is difficult to flow because of the large capillary resistance during centrifugation; ③There are obvious differences in water mobility and occurrence in coal samples with similar metamorphic degree, which may be one of the reasons for the difference of water and gas production in different block's CBM wells; ④The movable water in the study area is easy to flow out from coals with higher movable water saturation, greater permeability and more developed pore throat of more than 1 000 nm, but the water is difficult to flow out from coals with lower movable water saturation and more developed pore throat of 0-100 nm in which water is trapped.
-
表 1 样品基本测试结果
Table 1. Basic testing results of samples
样品号 所采矿区 Ro,max Mad Ad Vdaf FCad 气测渗透率/10-3μm2 φB/% CSH-3 城山矿 1.063 1.01 28.82 14.49 55.68 0.066 2 CSH-36 城山矿 1.162 1.45 30.32 8.29 59.94 0.148 3 DH-23 东海矿 0.908 1.62 28.06 8.37 61.95 0.077 1 PG-14 平岗矿 1.181 0.90 21.07 10.22 67.81 0.085 5 XH-48 杏花矿 1.569 0.92 18.46 10.65 69.97 0.063 8 XH-54 杏花矿 1.734 0.66 17.30 12.79 66.28 0.096 1 注:测试单位为中国地质大学(武汉)构造与油气资源教育部重点实验室;Ro,max为最大镜质体反射率;Mad为水分(空气干燥基);Ad为灰分(干燥基);Vdaf为挥发分(干燥无灰基);FCad为固定碳(空气干燥基) 表 2 样品NMR基本参数
Table 2. Basic NMR parameters of samples
样品号 T2c/ms 核磁
孔隙度/
%可动水
饱和度/
%束缚水
饱和度/
%孔体积分数φB/% 孔喉体积分数/% 吸附孔 渗流孔 裂隙 半径 < 10 nm
(T2 < 0.5 ms)半径[10, 10]
nm, T2[0.5, 5 ms)半径[100, 1 000]
nm, T2[5, 50 ms)半径>1 000 nm
(T2>50 ms)CSH-3 12.33 0.32 27.84 72.16 69.57 19.43 11.00 39.39 28.64 16.01 15.96 CSH-36 24.77 0.30 60.87 39.13 34.21 20.93 44.86 22.98 9.81 12.37 54.84 DH-23 14.17 0.69 31.78 68.22 64.86 22.34 12.80 26.59 33.23 20.66 19.52 PG-14 6.14 0.27 43.61 56.39 50.16 19.29 30.55 38.70 10.51 13.96 36.82 XH-48 1.75 0.39 29.33 70.67 77.97 15.86 6.18 43.59 31.87 14.55 9.99 XH-54 28.48 0.97 33.75 66.25 53.39 29.53 17.08 19.41 27.37 27.08 26.14 注:测试单位为太原理工大学煤与煤系气地质山西省重点实验室;T2c为T2截止值 -
[1] Cao L T, Yao Y B, Cui C, et al. Characteristics of in-situ stress and its controls on coalbed methane development in the southeastern Qinshui Basin, North China[J]. Energy Geoscience, 2020, 1(2): 69-80. [2] Zhang J Y, Feng Q H, Zhang X M, et al. Multi-fractured horizontal well for improved coalbed methane production in eastern Ordos basin, China: Field observations and numerical simulations[J]. Journal of Petroleum Science and Engineering, 2020, 194: 1-17. [3] Lu Y, Li H, Lu J X, et al. Clean up water blocking damage in coalbed methane reservoirs by microwave heating: Laboratory studies[J]. Process Safety and Environmental Protection, 2020, 138: 292-299. doi: 10.1016/j.psep.2020.04.007 [4] 原俊红, 付玉通, 蔡念. 延川南水文地质控气作用研究[J]. 地质科技情报, 2018, 37(6): 239-244. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806030.htmYuan J H, Fu Y T, Cai N. Function of hydrogeology on coalbed methane in Yanchuannan[J]. Geological Science and Technology Information, 2018, 37(6): 239-244(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806030.htm [5] 甘华军, 王华, 严德天. 高、低煤阶煤层气富集主控因素的差异性分析[J]. 地质科技情报, 2010, 29(1): 56-60. doi: 10.3969/j.issn.1000-7849.2010.01.009Gan H J, Wang H, Yan D T. Differential impact on high and low rank coal by the main factors of coalbed gas enrichment[J]. Geological Science and Technology Information, 2010, 29(1): 56-60(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2010.01.009 [6] 刘小磊. 基于核磁共振的煤层气产出过程气水动态变化规律模拟[D]. 北京: 中国矿业大学, 2016.Liu X L. Simulation of methane change law based on and water dynamic NMR during CBM output process[D]. Beijing: China University of Mining and Technology, 2016(in Chinese with English abstract). [7] 赵贤正, 桑树勋, 张建国, 等. 沁南煤层气开发区块煤储层特征分析及意义[J]. 中国煤层气, 2011, 8(2): 3-7. doi: 10.3969/j.issn.1672-3074.2011.02.001Zhao X Z, San S X, Zhang J G, et al. Analysis of characteristics of coal reservoir in CBM development block in South Qinshui and its significance[J]. China Coalbed Methane, 2011, 8(2): 3-7(in Chinese with English abstract). doi: 10.3969/j.issn.1672-3074.2011.02.001 [8] 王为民, 郭和坤, 叶朝辉, 等. 利用核磁共振可动流体评价低渗透油田开发潜力[J]. 石油学报, 2001, 22(6): 40-44. doi: 10.3321/j.issn:0253-2697.2001.06.009Wang W M, Guo H K, Ye C H, et al. The evaluation of development potential in low permeability oilfield by the aid of NMR Movable fluid detecting technology[J]. Acta Petrolei Sinica, 2001, 22(6): 40-44. doi: 10.3321/j.issn:0253-2697.2001.06.009 [9] 吕玉民, 胡爱梅, 汤达祯, 等. 煤中水可动性的核磁共振响应及其影响因素[J]. 高校地质学报, 2012, 18(3): 549-552. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201203025.htmLü Y M, Hu A M, Tang D Z, et al. Nuclear magnetic resonance (NMR) response of mobile water in coals and influencing factors[J]. Geological Journal of China Universities, 2012, 18(3): 549-552(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201203025.htm [10] 赵贤正, 杨延辉, 陈龙伟, 等. 高阶煤储层固-流祸合控产机理与产量模式[J]. 石油学报, 2015, 36(9): 1029-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201509001.htmZhao X Z, Yang Y H, Chen L W, et al. Production controlling mechanism and mode of solid-fluid coupling of high rank coal reservoirs[J]. Acta Petrolei Sinica, 2015, 36(9): 1029-1034(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201509001.htm [11] 郑可, 徐怀民, 陈建文, 等. 低渗储层可动流体核磁共振研究[J]. 现代地质, 2013, 27(3): 710-718. doi: 10.3969/j.issn.1000-8527.2013.03.024Zheng K, Xu H M, Chen J W, et al. Movable fluid study of low permeability reservoir with nuclear magnetic resonance technology[J]. Geoscience, 2013, 27(3): 710-718(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2013.03.024 [12] Shen J, Zhao J C, Qin Y, et al. Water imbibition and drainage of high rank coals in Qinshui Basin, China[J], Fuel, 2018, 211(1): 48-59. [13] 欧阳思琪, 孙卫, 吴育平, 等. 低渗-特低渗油藏渗流特征及影响因素: 以鄂尔多斯盆地安塞油田侯市-杏河地区长6油藏为例[J]. 地质科技情报, 2019, 38(2): 199-207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902023.htmOuyang S Q, Sun W, Wu Y P, et al. Seepage characteristics and influencing factors of low permeability ultra low permeability reservoir: A case of Chang 6 reservoir in Houshi-Xinghe area of ansai Oilfield in Ordos Basin[J]. Geological Science and Technology Information, 2019, 38(2): 199-207(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902023.htm [14] 谢升洪, 李伟, 冷福, 等. 致密砂岩储层可动流体赋存规律及制约因素研究: 以鄂尔多斯盆地华庆油田长6段储层为例[J]. 地质科技情报, 2019, 38(5): 105-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905011.htmXie S H, Li W, Leng F, et al. Distribution and controlling factors of movable fluid in tight sandstone reservoir: Taking Chang 6 Formation of Huaqing Oilfield in ordos basin as an example[J]. Geological Science and Technology Information, 2019, 38(5): 105-114(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905011.htm [15] Kenyon W E. Nuclear magnetic resonance as a petrophysical measurement[J]. Nuclear Geophysics, 1992, 6(2): 153-171. [16] 姚艳斌, 刘大锰. 煤储层精细定量表征与综合评价模型[M]. 北京: 地质出版社, 2013.Yao Y B, Liu D M. Fine quantitative characterization and comprehensive evaluation model of coal reservoir[M]. Beijing: Geological Publishing House, 2013(in Chinese with English abstract). [17] Zheng S J, Yao Y B, Cai Y D, et al. Characteristics of movable fluid and pore size distribution of low rank coals reservoir in southern margin of Junggar basin[J]. Coal Geology & Exploration, 2018, 46(1): 56-60. http://www.zhangqiaokeyan.com/academic-journal-cn_coal-geology-exploration_thesis/0201215629262.html [18] 李海波. 岩心核磁共振可动流体T2截止值试验研究[D]. 廊坊: 中国科学院渗流流体力学研究所, 2008.Li H B. Core experimental study of NMR T2 cutoff value[D]. Langfang: China National Petroleum Corporation & Chinese Academy of Science, 2018(in Chinese with English abstract). [19] 周尚文, 刘洪林, 闰刚, 等. 中国南方海相页岩储层可动流体及T2截止值核磁共振研究[J]. 石油与天然气地质, 2016, 37(4): 612-616. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201604022.htmZhou S W, Liu H L, Run G, et al. NMR research of movable fluid and T2 cutoff of marine shale in South China[J]. Oil & Gas Geology, 2016, 37(4): 612-616(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201604022.htm [20] 龚国波, 孙伯勤, 刘买利, 等. 岩心孔隙介质中流体的核磁共振弛豫[J]. 波普学杂志, 2006, 23(3): 379-395. https://www.cnki.com.cn/Article/CJFDTOTAL-PPXZ200603014.htmGong G B, Sun B Q, Liu M L, et al. NMR relaxation of the fluid in rock porous media[J]. Chinese Journal of Magnetic Resonance, 2006, 23(3): 379-395(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-PPXZ200603014.htm [21] Yao Y B, Liu D M, Che Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)[J]. Fuel, 2010, 89(7): 1371-1380. doi: 10.1016/j.fuel.2009.11.005 [22] 石强, 潘一山. 基于非磁性渗透仪和核磁技术的煤体结构分析[J]. 采矿与安全工程学报, 2006, 3(23): 302-305. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL200603011.htmShi Q, Pan Y S. Analysis of structure of coal based on Non-Magneticosmocope and nuclear magnetic imaging technology[J]. Journal of Ming & Safety Engineering, 2006(23): 302-305(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL200603011.htm [23] 张亚蒲, 何应付, 杨正明, 等. 核磁共振技术在煤层气储层评价中的应用[J]. 石油天然气学报, 2010, 2(32): 277-279. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201002071.htmZhang Y P, He Y F, Yang Z M, et al. Application of nuclear magnetic resonance technology in evaluation of coalbed methane reservoir[J]. Journal of Oil and Gas Technology, 2010, 2(32): 277-279(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201002071.htm [24] Yakov V. A practical approach to obtain primary drainage capillary pressure curves from NMR core and log data[J]. Petrophysics, 2001, 42(4): 334-343. [25] 刘俊刚. 低场核磁共振技术在煤储层物性及流体作用规律分析中的应用[D]. 北京: 中国地质大学(北京), 2013.Liu J G. Application of low field nuclear magnetic resonance in characterizing the physical properties of coal reservoir and the occurrence and migration regularity of fluid in coal[D]. Beijing: China University of Geosciences(Beijing), 2013. -