留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单轴压缩条件下不同含水率黑云母二长花岗岩破坏特征与机制

曹洋兵 陈玉华 张朋 黄真萍 张向向 陈杨涛

曹洋兵, 陈玉华, 张朋, 黄真萍, 张向向, 陈杨涛. 单轴压缩条件下不同含水率黑云母二长花岗岩破坏特征与机制[J]. 地质科技通报, 2021, 40(3): 163-172. doi: 10.19509/j.cnki.dzkq.2021.0308
引用本文: 曹洋兵, 陈玉华, 张朋, 黄真萍, 张向向, 陈杨涛. 单轴压缩条件下不同含水率黑云母二长花岗岩破坏特征与机制[J]. 地质科技通报, 2021, 40(3): 163-172. doi: 10.19509/j.cnki.dzkq.2021.0308
Cao Yangbing, Chen Yuhua, Zhang Peng, Huang Zhenping, Zhang Xiangxiang, Chen Yangtao. Failure characteristics and mechanism of biotite monzogranite with different water content under uniaxial compression[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 163-172. doi: 10.19509/j.cnki.dzkq.2021.0308
Citation: Cao Yangbing, Chen Yuhua, Zhang Peng, Huang Zhenping, Zhang Xiangxiang, Chen Yangtao. Failure characteristics and mechanism of biotite monzogranite with different water content under uniaxial compression[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 163-172. doi: 10.19509/j.cnki.dzkq.2021.0308

单轴压缩条件下不同含水率黑云母二长花岗岩破坏特征与机制

doi: 10.19509/j.cnki.dzkq.2021.0308
基金项目: 

福建省自然科学基金项目 2019J05036

岩土钻掘与防护教育部工程研究中心开放基金项目 201702

贵州省地质矿产勘查开发局地质科研项目 黔地矿科合[2020]1号

详细信息
    作者简介:

    曹洋兵(1987-), 男, 副教授, 主要从事岩石力学特性与岩石工程稳定性评价工作。E-mail: cybing1140504@163.com

    通讯作者:

    黄真萍(1965-), 女, 教授, 主要从事地质工程物探技术研究工作。E-mail: zhphuang@126.com

  • 中图分类号: P588.12+1

Failure characteristics and mechanism of biotite monzogranite with different water content under uniaxial compression

  • 摘要: 花岗岩在不同含水率条件下的变形破坏特征和机制对此类工程岩体稳定性评价具有重要的意义。开展不同含水率黑云母二长花岗岩单轴压缩试验,分析破坏特征和应力-应变曲线特征,开展断口扫描电镜试验,分析微观形貌特征,研究破坏机制。试验结果表明:黑云母二长花岗岩具有明显的应变软化特征;随含水率增大,曲线上微裂隙压密阶段长度逐渐增加,稳定破裂阶段及非稳定破裂阶段长度均逐渐缩短,但所占比例增大,曲线上峰前阶段涨落交替现象加剧;饱和时单轴抗压强度和弹性模量相比干燥时分别降低了40.68%,20.3%;变形破坏过程可大致分为以下5个阶段:平静期、裂纹萌生期、裂纹扩展伴随颗粒弹射期、片状碎片剥落伴随颗粒弹射期及崩落式破坏期;随含水率增大,花岗岩破坏时的剧烈程度、发出的声响及脆性程度均逐渐降低;花岗岩破坏机制为拉-剪复合破坏,低含水率时以压致拉张破坏为主,随含水率增大呈现拉张破坏减少而剪切破坏增多的趋势,饱和时以剪破坏为主。研究结果可为黑云二长花岗岩与水之间的耦合模型构建提供理论支撑,对水-岩耦合环境下工程岩体稳定性分析具有重要科学意义。

     

  • 图 1  加工完成后试样示意图

    Figure 1.  Schematic diagram of samples after processing

    图 2  黑云母二长花岗岩含水率(a)、纵波波速(b)随浸水时长变化曲线图

    Figure 2.  Curve diagram water content (a), and P-wave velocity (b) of biotite monzogranite changing with water immersion time

    图 3  不同含水率黑云母二长花岗岩单轴压缩应力-应变曲线

    Figure 3.  Stress-strain curves of biotite monzogranite with different water content under uniaxial compression

    图 4  不同含水率黑云母二长花岗岩单轴抗压强度(a)、弹性模量(b)拟合曲线

    Figure 4.  Uniaxial compressive strength (a) and modulus of elasticity (b) fitting curves of biotite monzogranite under different water content

    图 5  低含水率时黑云母二长花岗岩变形破坏过程示意图

    Figure 5.  Diagram of deformation-failure process of biotite monzogranite under low water content

    图 6  低含水率时黑云母二长花岗岩试验结果

    Figure 6.  Test results of biotite monzogranite under low water content

    图 7  中等含水率时黑云母二长花岗岩变形破坏过程示意图

    Figure 7.  Diagram of deformation-failure process of biotite monzogranite under medium water content

    图 8  中等含水率时黑云母二长花岗岩试验结果

    Figure 8.  Test results of biotite monzogranite under medium water content

    图 9  高含水率时黑云母二长花岗岩变形破坏过程示意图

    Figure 9.  Diagram of deformation-failure process of biotite monzogranite under high water content

    图 10  高含水率时黑云母二长花岗岩试验结果

    Figure 10.  Test results of biotite monzogranite under high water content

    图 11  片状剥落碎片扫描电镜试验成果

    a.切晶拉花-台阶状花样;b.根状-河流状花样;c.擦阶擦花花样

    Figure 11.  SEM results of flake spalling fragments

    图 12  块状崩落碎片电镜扫描成果

    a.台阶状花样;b.河流状-根状花样;c.切晶擦花-条纹花样

    Figure 12.  SEM results of massive caving fragments

    图 13  竖直破裂面断口扫描电镜成果

    a.穿晶-沿晶花样;b.穿晶-沿晶拉花、台阶状花样;c.平行滑移线花样

    Figure 13.  SEM results of vertical fracture surface

    图 14  倾斜破裂面断口扫描电镜成果

    a.擦阶擦花;b.平行条纹花样;c.切晶-沿晶拉花

    Figure 14.  SEM results of inclined fracture surface

    图 15  黑云母二长花岗岩含水后断口微观形貌

    Figure 15.  Fracture morphology of aquiferous biotite monzogranite

  • [1] 张春会, 赵全胜. 饱水度对砂岩模量及强度影响的三轴试验[J]. 岩土力学, 2014, 35(4): 951-958. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201404006.htm

    Zhang C H, Zhao Q S. Triaxial tests of effects of varied saturations on strength and modulus for sandstone[J]. Rock and Soil Mechanics, 2014, 35(4): 951-958(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201404006.htm
    [2] 刘小明, 李焯芬. 岩石断口微观断裂机制分析与试验研究[J]. 岩石力学与工程学报, 1997, 16(6): 509-513. doi: 10.3321/j.issn:1000-6915.1997.06.001

    Liu X M, Li C F. Mircofailure mechanism analysis and test study for rock failure surface[J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 16(6): 509-513(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.1997.06.001
    [3] 陈友晴. Westerly花岗岩试样单轴压缩破坏瞬时微裂纹观察[J]. 岩石力学与工程学报, 2008, 27(12): 2440-2448. doi: 10.3321/j.issn:1000-6915.2008.12.008

    Chen Y Q. Observation of microcracks patterns in Westerly granite specimens stressed immediately before failure by uniaxial compressive loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2440-2448(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.12.008
    [4] 张希巍, 王刚, 蔡明, 等. 凌海花岗岩变形特点与脆性评价[J]. 岩土力学, 2018, 39(10): 3518-3524. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810002.htm

    Zhang X W, Wang G, Cai M, et al. Deformation behaviour and brittleness of Linghai granite[J]. Rock and Soil Mechanics, 2018, 39(10): 3518-3524(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810002.htm
    [5] 朱泽奇, 盛谦, 冷先伦, 等. 三峡花岗岩起裂机制研究[J]. 岩石力学与工程学报, 2007, 26(12): 2570-2575. doi: 10.3321/j.issn:1000-6915.2007.12.025

    Zhu Z Q, Sheng Q, Leng X L, et al. Study on crack initiation mechanism of three Gorges granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2570-2575(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.12.025
    [6] 何满潮, 苗金丽, 李德建, 等. 深部花岗岩试样岩爆过程试验研究[J]. 岩石力学与工程学报, 2007, 26(5): 865-876. doi: 10.3321/j.issn:1000-6915.2007.05.001

    He M C, Miao J L, Li D J, et al. Experimental study on rockburst processes of granite specimen at great depth[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 865-876(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.05.001
    [7] 苗金丽, 何满潮, 李德建, 等. 花岗岩应变岩爆声发射特征及微观断裂机制[J]. 岩石力学与工程学报, 2009, 28(8): 1593-1603. doi: 10.3321/j.issn:1000-6915.2009.08.010

    Miao J L, He M C, Li D J, et al. Acoustic emission characteristics of granite under strain rockburst test and its micro-fracture mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1593-1603(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2009.08.010
    [8] 吕颖慧, 刘泉声, 胡云华. 基于花岗岩卸荷试验的损伤变形特征及其强度准则[J]. 岩石力学与工程学报, 2009, 28(10): 2096-2103. doi: 10.3321/j.issn:1000-6915.2009.10.018

    Lu Y H, Liu Q S, Hu Y H. Damage deformation characteristics and its strength griterion based on unloading experiments of granites[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2096-2103(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2009.10.018
    [9] 王者超, 赵建纲, 李术才, 等. 反复加卸载作用下花岗岩疲劳力学性质及其本构模型[J]. 岩石力学与工程学报, 2012, 31(9): 1888-1900. doi: 10.3969/j.issn.1000-6915.2012.09.021

    Wang Z C, Zhao J G, Li S C, et al. Fatigue mechanical behavior of granite subjected to cyclic load and its constitutive model[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 1888-1900(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2012.09.021
    [10] 周辉, 孟凡震, 刘海涛. 花岗岩脆性破坏特征与机制试验研究[J]. 岩石力学与工程学报, 2014, 33(9): 1822-1827. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409013.htm

    Zhou H, Meng F Z, Liu H T, et al. Expreimental study on characteristics and mechanism of brittle failure of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1822-1827(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409013.htm
    [11] Akesson U, Hansson J, Stijh J. Characterisation of microcracks in the Bohus granite, western Sweden, caused by uniaxial cyclic loading[J]. Engineering Geology, 2004, 72(1): 131-142. http://www.sciencedirect.com/science/article/pii/S0013795203001686
    [12] Lajtal E Z. Microscopic fracture processes in a granite[J]. Rock Mechanics and Rock Engineering, 1998, 31(4): 237-250. doi: 10.1007/s006030050023
    [13] 倪骁慧, 朱珍德, 李晓娟, 等. 循环荷载下花岗岩细观损伤量化试验研究[J]. 岩土力学, 2011, 32(7): 1991-1995. doi: 10.3969/j.issn.1000-7598.2011.07.012

    Ni X H, Zhu Z D, Li X J, et al. Quantitative test study of meso-damage of rock under cyclic load[J]. Rock and Soil Mechanics, 2011, 32(7): 1991-1995(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2011.07.012
    [14] Heap M J, Faulkner D R. Quantifying the evolution of static elastic properties as crystalline rock approaches failure[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(3): 564-573. http://www.sciencedirect.com/science/article/pii/S1365160907001165
    [15] Lajtai E Z, Schmidtke R H, Bielus L P. The effect of water on the time-dependent deformation and fracture of a granite[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1987, 24(4): 247-255. http://www.sciencedirect.com/science/article/pii/0148906287901793
    [16] 陈钢林, 周仁德. 水对受力岩石变形破坏宏观力学效应的实验研究[J]. 地球物理学报, 1991, 34(3): 335-342. doi: 10.3321/j.issn:0001-5733.1991.03.009

    Chen G L, Zhou R D. An experimental study concerning the macro-scopic effect of water on the deformation and failure of loaden rocks[J]. Acta Geophysica Sinic, 1991, 34(3): 335-342(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.1991.03.009
    [17] 邓朝福, 刘建锋, 陈亮. 不同含水状态花岗岩断裂力学行为及声发射特征[J]. 岩土工程学报, 2017, 39(8): 1538-1544. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708029.htm

    Deng C F, Liu J F, Chen L, et al. Mechanical behaviors and acoustic emission characteristics of fracture of granite under different moisture conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1538-1544(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708029.htm
    [18] 许锡昌, 刘泉声. 高温下花岗岩基本力学性质初步研究[J]. 岩土工程学报, 2000, 22(3): 332-335. doi: 10.3321/j.issn:1000-4548.2000.03.014

    Xu X C, Liu Q S. A preliminary study of basic mechanical properties for granite at high temperature[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 332-335(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2000.03.014
    [19] Alm O, Jaktlund L L. The influence of microcrack density on the elastic and fracture mechanical properties of Stripa granite[J]. Physics of the Earth and Planetary Interiors, 1985, 40(3): 161-179. doi: 10.1016/0031-9201(85)90127-X
    [20] Lau J S O, Jackson R. The effects of temperature and water-saturation on mechanical properties of Lac du Bonnet pink granite[C]//8th International Congress on Rock Mechanics. Tokyo, Japan: A.A. Balkema, 1995.
    [21] 赵强, 骆进, 谭龙, 等. 支撑剂对单裂隙花岗岩的渗流特性与热交换影响试验研究[J]. 地质科技情报, 2018, 37(6): 288-297. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806037.htm

    Zhao Q, Luo J, Tan L, et al. Propped stimulation of flow and heat exchange characteristics of single fracture granite[J]. Geological Science and Technology Information, 2018, 37(6): 288- 297(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806037.htm
    [22] 喻勇, 徐达, 窦斌, 等. 高温花岗岩遇水冷却后可钻性试验研究[J]. 地质科技情报, 2019, 38(4): 287-292. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904031.htm

    Yu Y, Xu D, Dou B, et al. Experimental study on drillability of high temperature granite after water cooling[J]. Geological Science and Technology Information, 2019, 38(4): 287-292(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904031.htm
    [23] 曹洋兵, 陈玉华, 黄真萍, 等. 不同含水率条件下花岗岩脆性特征评价指标研究[J]. 工程地质学报, 2020, 28(1): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202001004.htm

    Cao Y B, Chen Y H, Huang Z P, et al. Study on evaluation index of brittleness characteristics of granite under different water content conditions[J]. Journal of Engineering Geology, 2020, 28(1): 29-38(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202001004.htm
    [24] 中国电力企业联合会. GB/T 50266-2013工程岩体试验方法标准[S]. 北京: 中国计划出版社, 2014.

    China Electricity Council. GB/T 50266-2013 Standard for test methods of engineering rock mass[S]. Beijing: China Planning Press, 2014(in Chinese).
    [25] 谢学斌, 周瀚, 向天元. 砂岩单轴压缩与干湿循环耦合损伤试验研究[J]. 水文地质工程地质, 2016, 43(4): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604013.htm

    Xie X B, Zhou H, Xiang T Y. An experimental study and simulation of damage of the single shaft compression and drying-wetting cycle in sandstone[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 66-71(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604013.htm
    [26] 冯涛, 谢学斌, 潘长良, 等. 岩爆岩石断裂机理的电镜分析[J]. 中南工业大学学报: 自然科学版, 1999, 30(1): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD901.004.htm

    Feng T, Xie X B, Pan C L, et al. Fracture mechanism analysis for burst rock with electron scanning microscope[J]. Journal of Central South University of Technology: Natural Science, 1999, 30(1): 14-17(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD901.004.htm
    [27] Kassner M E, Nnemat-Nasser S, Suo Z, et al. New directions in mechanics[J]. Mechanics of Materials, 2005, 37(2/3): 231-259. http://www.sciencedirect.com/science/article/pii/S016766360400081X
    [28] 周盛涛, 方文, 蒋楠, 等. 冻融循环作用下砂岩单轴压缩破坏断口特征分形研究[J]. 地质科技通报, 2020, 39(5): 61-68. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10051.shtml

    Zhou S T, Fang W, Jiang N, et al. Fractal geometry study on uniaxial compression fracture characteristics of sand stone subjected to freeze-thaw cycles[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 61-68(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract10051.shtml
    [29] 谭以安. 岩爆岩石断口扫描电镜分析及岩爆渐进破坏过程[J]. 电子显微学报, 1989, 8(2): 41-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV198902008.htm

    Tan Y A. Analysis of fractured face of rock burst with scanning electron microscope and its progressive failure process[J]. Journal of Chinese Electron Microscopy Society, 1989, 8(2): 41-48(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV198902008.htm
    [30] 郭军, 冯国瑞, 郭育霞, 等. 饱和水煌斑岩单轴压缩力学特性变化及其微观机理[J]. 煤炭学报, 2015, 40(2): 323-330. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502014.htm

    Guo J, Feng G R, Guo Y X, et al. Mechanical property variation under dynamic uniaxial compression and micro-mechanism of lamprophyre in saturated state[J]. Journal of China Coal Society, 2015, 40(2): 323-330(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502014.htm
  • 加载中
图(15)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  23
  • PDF下载量:  596
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-01

目录

    /

    返回文章
    返回