Discrete element simulation study on micromechanical characteristics of undisturbed and remolded loess in biaxial test
-
摘要: 黄土作为一种特殊的颗粒材料,微观上颗粒组成的结构决定了其力学特性。原状及重塑黄土因结构的差异而具有不同的力学特性。针对黄土结构性如何影响其力学特征这一基本问题,开展基于电镜扫描获取细观颗粒信息,同时考虑颗粒形状、颗粒破碎可能性进行建模的离散单元法进行原状黄土和饱和重塑土在恒定应变速率双轴试验下的宏观力学和细观力学性能研究。研究结果显示:试样微观结构的差异对变形破坏过程产生显著影响。当轴向应力较低时原状黄土及重塑黄土力链多分布于大型骨架颗粒附近,随着轴向应力增加,原状黄土力链形成网状图案但仍具备主要传导区域,重塑黄土无明显主要传导区,呈现均匀网状。原状土及重塑土骨架颗粒簇周围多形成张拉裂隙,剪切裂隙多数形成于骨架颗粒簇内部,又以颗粒簇相互挤压接触时最为明显。使用该建模方法,可以有效反映原状及重塑黄土由于内部结构组成差异导致相同应力条件下产生的不同内部应力状态。基于以上研究结论,给出了黄土结构性对宏观强度影响的微观解释。研究成果可为黄土地区地质灾害防治提供一定依据。使用该建模方法,可以有效反映原状及重塑黄土由于内部结构组成差异导致相同应力条件下产生的不同内部应力状态。基于以上研究结论,给出了黄土结构性对宏观强度影响的微观解释。Abstract: Loess is a special granular material, and its mechanical properties are determined by the microscopic structure of granules. The undisturbed and remolded loess have different mechanical properties due to the difference in structure. In order to solve the basic problem of how the structural properties of loess affect its mechanical characteristics, based on scanning electron microscopy (SEM) to study the macroscopic and microscopic mechanical properties of undisturbed loess and saturated remolded loess under constant strain rate biaxial test, while considering the shape of particles and the possibility of particle breakage. The simulation results show that when the stress is low, the undisturbed loess and the remolded loess force chains are mostly distributed near the large framework particles. With the increase of stress, the undisturbed force chains form a network pattern but still have the main conduction region, while the remolded loess has no obvious major conduction region and presents a uniform mesh. Under the same confining pressure and strain, the number of cracks in the undisturbed loess is lower and they are concentrated in the shear zone. The number of cracks in the remolded loess is more but more uniform.Tension cracks are mostly formed around the clusters of undisturbed loess and remolded loess. Shear cracks are mostly formed inside the clusters of framework particles, and the most obvious is when the clusters of particles are in contact with each other. Using this modeling method can effectively reflect the different internal stress states of undisturbed and remolded loess under the same stress condition due to the difference in internal structure composition. Based on the above research conclusions, a microscopic explanation of the influence of loess structure on the macroscopic strength is given. The research results can provide a certain basis for the prevention and control of geological disasters in the loess area.
-
Key words:
- loess /
- micromechanical characteristics /
- biaxial test /
- flexible cluster /
- discrete element simulation
-
表 1 土体宏观力学参数
Table 1. Macroscopic mechanical parameters of loess
密度ρ/(g·cm-3) 孔隙比e 黏聚力c/
kPa内摩擦角φ/(°) 原状土 1.62 0.85 55.8 15.9 重塑土 1.62 0.81 39.3 8.8 表 2 PFC模型细观参数
Table 2. Micro-parameters of PFC model
土样 参数 几何颗粒 球颗粒 几何-球 碎屑及团粒 原状土 法向刚度/(N·m-1) 1.5×1010 1.5×1010 1.5×1010 - 剪切刚度/(N·m-1) 1.0×1010 1.0×1010 1.0×1010 - 有效模量/(N·m-2) 2.0×107 2.0×107 2.0×107 - 刚度比 1.0 1.0 1.0 - 平行黏结有效模量/(N·m-2) 2.0×107 2.0×107 2.0×107 - 平行黏结刚度比 1.0 1.0 1.0 - 颗粒摩擦系数 0.5 0.5 0.5 - 法向黏结刚度/(N·m-1) 1.5×106 8.0×105 8.0×105 - 切向黏结刚度/(N·m-1) 1.5×106 1.5×1010 8.0×105 - 黏结力/(N·m-1) 3.5×105 1.3×105 1.3×105 - 重塑土 法向刚度/(N·m-1) 1.5×1010 1.5×1010 1.5×1010 1.5×1010 剪切刚度/(N·m-1) 1.0×1010 1.0×1010 1.0×1010 1.0×1010 有效模量/N·m-2) 2.0×107 2.0×107 2.0×107 2.0×107 刚度比 1.0 1.0 1.0 平行黏结有效模量/(N·m-2) 2×107 - 2×107 2×107 平行黏结刚度比 1.0 - 1.0 1.0 颗粒摩擦系数 0.5 0.5 0.5 0.5 法向黏结刚度/(N·m-1) 1.4×106 6.0×106 6.9×105 6.9×105 切向黏结刚度/(N·m-1) 1.4×106 6.0×106 6.9×105 6.9×105 黏结力/(N·m-1) 3.0×105 - 1.5×105 1.5×105 -
[1] 任晓虎, 许强, 赵宽耀, 等. 反复入渗对重塑黄土渗透特性的影响[J]. 地质科技通报, 2020, 39(2): 130-138. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9982.shtmlRen X H, Xu Q, Zhao K Y, et al. Effect of repeated infiltration on permeability characteristics of remolded loess[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 130-138(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract9982.shtml [2] 刘博诗, 张延杰, 王旭, 等. 人工制备黄土湿陷性影响因素及微观机理研究[J]. 地下空间与工程学报, 2017, 13(2): 330-336, 343. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201702007.htmLiu B S, Zhang Y J, Wang X, et al. Research on the collapsibility influencing factors and micro-mechanism of artificial loess[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(2): 330-336, 343(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201702007.htm [3] Wan L X, Ping L, Sai K, et al. Prediction of the wetting-induced collapse behaviour using the soil-water characteristic curve[J]. Journal of Asian Earth Sciences, 2018, 151: 259-268. doi: 10.1016/j.jseaes.2017.11.009 [4] 董吉, 陈筠, 邬忠虎, 等. 木质素纤维红黏土强度及变形特性试验研究[J]. 地质力学学报, 2019, 25(3): 421-427. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201903009.htmDong J, Chen Y, Wu Z H, et al. Experimental study on the shear strength and deformation characteristics of lignin-fiber red clay[J]. Chinese Journal of Geomechanics, 2019, 25(3): 421-427(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201903009.htm [5] 张炜, 周剑, 于世伟, 等. 双轴压缩下颗粒物质接触力与力链特性研究[J]. 应用力学学报, 2018, 35(3): 530-537, 687. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201803014.htmZhang W, Zhou J, Yu S W, et al. Research on contact force and force chain characteristics of particulate matter under biaxial compression[J]. Chinese Journal of Applied Mechanics, 2018, 35(3): 530-537, 687(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201803014.htm [6] Bock H, Blümling P, Konietzky H. Study of the micro-mechanical behaviour of the Opalinus Clay: An example of co-operation across the ground engineering disciplines[J]. Bulletin of Engineering Geology and the Environment, 2006, 65(2): 195-207. doi: 10.1007/s10064-005-0019-9 [7] 李识博, 王常明, 王念秦, 等. 黄土三轴试验的颗粒流数值模拟[J]. 中国公路学报, 2013, 26(6): 22-29. doi: 10.3969/j.issn.1001-7372.2013.06.004Li S B, Wang C M, Wang N Q, et al. Numerical simulation of loess triaxial shear test by PFC3D[J]. China Journal of Highway and Transport, 2013, 26(6): 22-29(in Chinese with English abstract). doi: 10.3969/j.issn.1001-7372.2013.06.004 [8] 张崇帅. 考虑球体颗粒胶结的三维颗粒流模拟研究[D]. 西安: 西安理工大学, 2018.Zhang C S. PFC3D simulation study considering spherical particle cementation[D]. Xi'an: Xi'an University of Technology, 2018(in Chinese with English abstract). [9] 宁孝梁. 黏性土的细观三轴模拟与微观结构研究[D]. 杭州: 浙江大学, 2017.Ning X L. The meso-simulation of triaxial tests and microstructure study of the cohesive soil[D]. Hangzhou: Zhejiang University, 2017(in Chinese with English abstract). [10] 崔博, 邓博麒, 刘明辉, 等. 基于不规则颗粒离散元的砾石土三轴数值模拟[J]. 水力发电学报, 2020, 39(4): 73-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202004008.htmCui B, Deng B Q, Liu M H, et al. Numerical simulation of triaxial tests on gravelly soil based on DEM of irregular-shaped particles[J]. Journal of Hydroelectric Engineering, 2020, 39(4): 73-87(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202004008.htm [11] 焦玉勇, 王浩, 马江锋. 土石混合体力学特性的颗粒离散元双轴试验模拟研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3564-3573. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1118.htmJiao Y Y, Wang H, Ma J F. Research on biaxial test of mechanical characteristics on soil-rock aggregate(SRA) based on particle flow code simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3564-3573(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1118.htm [12] 周伦伦. 颗粒破碎与形状对颗粒材料力学性质影响的离散元研究[D]. 武汉: 武汉大学, 2017.Zhou L L. DEM investigation of influence of particle breakage and shape on the mechanical behaviors of granular materials[D]. Wuhan: Wuhan University, 2017(in Chinese with English abstract). [13] Wensrich C M, Katterfeld A, Sugo D. Characterisation of the effects of particle shape using a normalised contact eccentricity[J]. Granular Matter, 2014, 16(3): 327-337. doi: 10.1007/s10035-013-0465-1 [14] 闫欣宜, 胡新丽, 付茹. 橡胶纤维-砂混合料力学特性的离散元三轴试验研究[J]. 地质科技通报, 2020, 39(2): 168-174. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9986.shtmlYan X Y, Hu X L, Fu R. Triaxial shear test of mechanical characteristics on rubber fiber-sand mixtures based on particle flow code simulation[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 168-174(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract9986.shtml [15] Estrada N, E Azéma, Radjai F, et al. Identification of rolling resistance as a shape parameter in sheared granular media[J]. Physical Review E, 2011, 84(1): 11306-11306. doi: 10.1103/PhysRevE.84.011306 [16] 林成远, 唐辉明, 汪丁建, 等. 块石定向性特征对土-石混合体强度影响的数值模拟[J]. 地质科技通报, 2020, 39(5): 38-46. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10048.shtmlLin C Y, Tang H M, Wang D J, et al. Influence on the strength of soil-rock mixture made by the rock block orientation features based on numerical experiment[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 38-46(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract10048.shtml [17] Liu S H, Wang Y S, Shen C M. DEM analysis of granular crushing during simple shearing[J]. Marine Georesources & Geotechnology, 2018, 36(5): 522-531. https://www.researchgate.net/profile/Sihong-Liu-2/publication/319222548_DEM_analysis_of_granular_crushing_during_simple_shearing/links/5e87ea47299bf13079786fb0/DEM-analysis-of-granular-crushing-during-simple-shearing.pdf [18] 李长冬, 唐辉明, 胡新丽, 等. 岩石相似材料变形与强度特性及数值模拟研究[J]. 地质科技情报, 2008, 27(6): 98-101. doi: 10.3969/j.issn.1000-7849.2008.06.019Li C D, Tang H M, Hu X L, et al. Deformation and strength characteristics and numerical simulation of rock similar material[J]. Geological Science and Technology Information, 2008, 27(6): 98-101(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2008.06.019 [19] 陈璞皎, 郑祥民, 周立旻, 等. 宁镇地区下蜀黄土粒度特征及其古环境意义[J]. 地质科技情报, 2017, 36(5): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705002.htmChen P J, Zheng X M, Zhou L M, et al. Grain size distribution and its significance of the Xiashu loess in Nanjing-Zhenjiang area[J]. Geological Science and Technology Information, 2017, 36(5): 7-13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705002.htm [20] Wang Y, Yang H, Jing X. Structural characteristics of natural loess in northwest China and its effect on shear behavior[J]. Geotechnical and Geological Engineering, 2020, 39(1): 65-78. doi: 10.1007/s10706-020-01608-8 [21] Jiang M, Zhang F, Hu H. DEM Modeling Mechanical Behavior of Unsaturated Structural Loess under Constant Stress Increment Ratio Compression Tests[J]. International Journal of Geomechanics, 2017, 17(4): 04016108. doi: 10.1061/(ASCE)GM.1943-5622.0000762 [22] Shi D D, Zheng L, Xue J F, et al. DEM modeling of particle breakage in silica sands under one-dimensional compression[J]. Acta Mechanica Solida Sinica, 2016, 29(1): 78-94. doi: 10.1016/S0894-9166(16)60008-3 [23] Ueda T, Matsushima T, Yamada Y. DEM simulation on the one-dimensional compression behavior of various shaped crushable granular materials[J]. Granular Matter, 2013, 15(5): 675-684. doi: 10.1007/s10035-013-0415-y [24] 罗勇. 土工问题的颗粒流数值模拟及应用研究[D]. 杭州: 浙江大学, 2007.Luo Y. Simulation of soil mechanical behaviors using discrete element method based on particle flow code and it application[D]. Hangzhou: Zhejiang University, 2007(in Chinese with English abstract). [25] 张刚, 周健, 姚志雄. 堤坝管涌的室内试验与颗粒流细观模拟研究[J]. 水文地质工程地质, 2007, 34(6): 83-86. doi: 10.3969/j.issn.1000-3665.2007.06.020Zhang G, Zhou J, Yao Z X. Study on mesomechanical simulation of piping with model tests and PFC2D[J]. Hydrogeology and Engineering Geology, 2007, 34(6): 83-86(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2007.06.020 [26] 姚志雄, 周健, 张刚. 砂土管涌机理的细观试验研究[J]. 岩土力学, 2009, 30(6): 1604-1610. doi: 10.3969/j.issn.1000-7598.2009.06.012Yao Z X, Zhou J, Zhang G. Meso-experimental research on piping mechanism in sandy soils[J]. Rock and Soil Mechanics, 2009, 30(6): 1604-1610(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2009.06.012 [27] Li T, Jiang M M, Colin T. Three-dimensional discrete element analysis of triaxial tests and wetting tests on unsaturated compacted silt[J]. Computers and Geotechnics, 2018, 97: 90-102. doi: 10.1016/j.compgeo.2017.12.011 [28] 同霄, 朱兴华, 马鹏辉, 等. 颗粒离散元方法中黄土强度参数研究[J]. 地下空间与工程学报, 2019, 15(2): 435-442. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201902018.htmTong X, Zhu X H, Ma P H, et al. Study on the strength parameters of loess in granular discrete element method[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(2): 435-442(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201902018.htm [29] Owen D R J, Feng Y T. Parallelised finite/discrete element simulation of multi-fracturing solids and discrete systems[J]. Engineering Computations 2001, 18(3/4): 557-576. doi: 10.1108/02644400110387154 [30] 蒋明镜, 李涛, 胡海军. 结构性黄土双轴压缩试验的离散元数值仿真分析[J]. 岩土工程学报, 2013, 35(增刊2): 241-246. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2041.htmJiang M J, Li T, Hu H J. Numerical simulation of biaxial tests on structured loess by distinct element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 241-246(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2041.htm