留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涿鹿盆地三维多裂隙地质模型地温场数值模拟

陈金龙 罗文行 窦斌 周洋 宁文涛

陈金龙, 罗文行, 窦斌, 周洋, 宁文涛. 涿鹿盆地三维多裂隙地质模型地温场数值模拟[J]. 地质科技通报, 2021, 40(3): 22-33. doi: 10.19509/j.cnki.dzkq.2021.0317
引用本文: 陈金龙, 罗文行, 窦斌, 周洋, 宁文涛. 涿鹿盆地三维多裂隙地质模型地温场数值模拟[J]. 地质科技通报, 2021, 40(3): 22-33. doi: 10.19509/j.cnki.dzkq.2021.0317
Chen Jinlong, Luo Wenxing, Dou Bin, Zhou Yang, Ning Wentao. Numerical simulation of geothermal field in a three-dimensional multi-fractured geological model of Zhuolu Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 22-33. doi: 10.19509/j.cnki.dzkq.2021.0317
Citation: Chen Jinlong, Luo Wenxing, Dou Bin, Zhou Yang, Ning Wentao. Numerical simulation of geothermal field in a three-dimensional multi-fractured geological model of Zhuolu Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 22-33. doi: 10.19509/j.cnki.dzkq.2021.0317

涿鹿盆地三维多裂隙地质模型地温场数值模拟

doi: 10.19509/j.cnki.dzkq.2021.0317
基金项目: 

企业自主研发项目 CX2017Z29

国家重点研发计划项目 2019YFB1504203

国家重点研发计划项目 2019YFB1504204

国家重点研发计划项目 2019YFB1504201

详细信息
    作者简介:

    陈金龙(1992-), 男, 现正攻读地质工程专业博士学位, 主要从事地热数值模拟、地热储层改造、地热直接发电和地热地质方面的研究工作。E-mail: loongchen@cug.edu.cn

    通讯作者:

    窦斌(1973-), 男, 教授, 博士生导师, 主要从事地热及非常规能源开采(天然气水合物、煤层气、页岩气、干热岩)研究工作。E-mail: doubin@cug.edu.cn

  • 中图分类号: P648.0+21

Numerical simulation of geothermal field in a three-dimensional multi-fractured geological model of Zhuolu Basin

  • 摘要: 地温场预测是地热资源储量评价的重要前提,深部裂隙岩体渗流-传热耦合温度场研究正受到越来越多的关注。涿鹿盆地是新生代地堑式断陷盆地,地表温泉出露点多,地热资源丰富。依据实际地质调查结果和3条地球物理勘探测线解译的地质构造剖面,建立了矿场尺度的涿鹿盆地三维不平行多裂隙地质模型和地热成因模型,赋值调整参数,得到考虑地下水流动情况下多裂隙岩体渗流-传热数学模型,模型的合理性得到验证后,模拟计算了盆地内部温度场,指出盆地地热异常区集中在盆地中心蓟县系(70℃左右)和盆地北东长城系部位(90~98℃),最后研究分析了水力梯度的变化对盆地内部温度场的影响规律。研究结果为涿鹿盆地或同类型地区地热资源勘探、评价和开发利用提供一定的依据。

     

  • 图 1  华北克拉通北缘及临区大地构造划分及涿鹿盆地地形地貌(图a据文献[20]修改)

    Figure 1.  Tectonic division of the northern margin of the North China Craton and adjacent areas and Topography of Zhuolu Basin

    图 2  涿鹿盆地构造地质特征及A-B物探线剖面(据文献[27]修改绘制)

    F1.怀涿盆地北缘断裂,F2.方家沟-西八里隐伏断裂,F3.桑干河隐伏断裂,F4.老君山山前隐伏断裂;F5、F6、F7.其他断裂;Q.第四纪,J.侏罗系,Qb.青白口系,Jx.蓟县系,Ch.长城系,Ar.桑干群

    Figure 2.  Characteristics of geological structure of Zhuolu Basin and A-B geophysical prospecting line section

    图 3  三维不平行多裂隙地质模型的建立过程

    Figure 3.  Established three-dimensional non-parallel multi-fractured geological model

    图 4  涿鹿盆地三维地质模型

    Figure 4.  Three-dimensional geological model of Zhuolu Basin

    图 5  涿鹿盆地内部流体渗流流线图

    Figure 5.  Internal streamline diagram of Zhuolu Basin

    图 6  居里等温面特征图(图 6据文献[37])

    a.怀涿盆地及邻区距离等温面埋深图;b.怀涿盆地及邻区居里等温面埋深曲面图

    Figure 6.  Depth characteristics of distance isothermal surface in the study area

    图 7  涿鹿盆地地热成因图

    ①地下水下渗后被岩石温度加热;②热流向凸起部位集中;③热流体沿断裂上涌;④岩溶裂隙地段局部对流

    Figure 7.  Origin of geothermal in Zhuolu Basin

    图 8  实测地温曲线与计算地温曲线对比图

    Figure 8.  Comparison of measured and calculated geothermal curve

    图 9  局部截面温度场云图(x'表示裂隙F3的延伸方向)

    Figure 9.  Contour of local cross-section temperature field

    图 10  岩层面温度场云图

    Figure 10.  Nephogram of temperature distribution on the rock layer

    图 11  垂向切面温度场云图

    a.z=-50 m切面(侏罗系)温度场云图;b.z=-1 200 m切面(蓟县系)温度场云图;
    c.z=-2 500 m切面(长城系)温度场云图;d.z=-3 000 m切面(长城系)温度场云图

    Figure 11.  Contour of vertical section temperature field

    图 12  地层温度-水力梯度关系曲线图

    a.x=8 000 m, y=8 000 m, z=-100~2 500 m; b.x=10 000 m, y=9 000 m, z=-100~-2 500 m

    Figure 12.  Temperature-hydraulic gradient relation graph for formation

    表  1  边界条件设置情况

    Table  1.   Boundary condition setting

    边界条件类型 设置部位 大小
    定压边界 模型的南西、北东边界中碳酸盐岩岩层沿桑干河流域(F2-F4之间)的边界 $ {H_0} = - {\rm{delta}}H \cdot \sqrt {{{\left[ {2.724\;96 \times \left( {x - 4\;422.59} \right)} \right]}^2} + {y^2}} $
    定温边界 侏罗系顶板 10℃
    热源边界 模型底界面 -0.059 mW/m2
    开放边界 模型侧面 T_top+(550-z)×delta_Tz
    注:T_top表示涿鹿县城常年平均地表温度;delta_Tz表示涿鹿盆地地温梯度
    下载: 导出CSV

    表  2  水文地质渗流物性参数及热物性参数

    Table  2.   Hydrogeological seepage physical property parameter and thermophysical property parameter

    热储 岩体导热系数/W·(m·K)-1 渗透率/cm2 岩体比热/MJ·(m3·K)-1 岩体密度/(g·cm-3) 岩体恒压热容/J·(kg·K)-1 孔隙率 裂隙宽/m
    keff_x keff_y keff_z kx ky kz
    J 3.01 3.01 3.01 7.00×10-10 7.00×10-10 7.00×10-10 2.06 2.64 5 438.4 0.012 -
    Qb 3.66 3.66 3.66 8.00×10-10 8.00×10-10 8.00×10-10 1.58 2.54 4 013.2 0.013 -
    Jx 3.64 3.64 3.64 1.20×10-9 1.20×10-9 1.20×10-9 1.73 2.62 4 532.6 0.021 -
    Ch 3.33 3.33 3.33 1.50×10-9 1.50×10-9 1.50×10-9 1.72 2.57 4 420.4 0.021 -
    F1 1.51 2.51 2.51 1.20×10-10 1.20×10-8 1.20×10-8 1.35 0.82 1 107.0 0.180 135
    F2 1.23 2.23 2.23 1.00×10-10 1.00×10-8 1.00×10-8 1.45 0.65 942.5 0.210 140
    F3 1.41 2.41 2.41 1.50×10-10 1.50×10-8 1.50×10-8 1.36 0.59 802.4 0.150 130
    F4 1.15 2.15 2.15 1.30×10-10 1.30×10-8 1.30×10-8 1.28 0.64 819.2 0.230 138
    注:keff_xkeff_ykeff_z分别表示xyz 3个方向的导热系数;kxkykz分别表示xyz 3个方向的渗透率
    下载: 导出CSV
  • [1] 汪集暘. 地热学及其应用[M]. 北京: 科学出版社, 2015.

    Wang J Y. Geothermics and its applications[M]. Beijing: Science Press, 2015(in Chinese with English abstract).
    [2] 自然资源部中国地质调查局, 国家能源局新能源和可再生能源司, 中国科学院科技战略咨询研究院. 中国地热能发展报告(2018)[M]. 北京: 中国石化出版社, 2018: 5-8.

    China Geological Survey, National Energy Administration, Institutes of Science and Development, Chinese Academy of Sciences. China Geothermal Energy Development Report (2018)[M]. Beijing: China Petrochemical Press CO. LTD, 2018: 5-8(in Chinese with English abstract).
    [3] Reed M H, Spycher N F. Calculation of pH and mineral equilibria in hydrothermal water with application to geothermometer and studies of boiling and dilution[J]. Geochimica et Cosmochimica Acta, 1984, 48: 1479-1492. doi: 10.1016/0016-7037(84)90404-6
    [4] 郑西来, 刘鸿俊. 地热温标中的水-岩平衡状态研究[J]. 西安地质学院学报, 1996, 8(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX601.014.htm

    Zheng X L, Liu H J. Study of the water-rock equilibrium state in the application of geothermometer[J]. Journal of Xi'an College of Geology, 1996, 8(1): 74-79(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX601.014.htm
    [5] 吴红梅, 孙占学. 地热系统中矿物-流体化学平衡的计算[J]. 华东地质学院学报, 2000, 23(1): 39-42. doi: 10.3969/j.issn.1674-3504.2000.01.009

    Wu H M, Sun Z X. Calculation of the fluid-rock equilibrium state in the geothermal system[J]. Journal of East China Geological Institute, 2000, 23(1): 39-42(in Chinese with English abstract). doi: 10.3969/j.issn.1674-3504.2000.01.009
    [6] Dowdle W L, Cobb W M. Static formation temperature from Well Logs-An empirical method[J]. Journal of Petroleum Technology, 1975, 27(1): 1326-1330.
    [7] Liu C W, Li K W, Chen Y G, et al. Static formation temperature prediction based on bottom hole temperature[J]. Energies, 2016, 9(8): 1-14. http://www.ingentaconnect.com/content/doaj/19961073/2016/00000009/00000008/art00043
    [8] 周训, 陈明佑, 梁池生. 地下热水运移数学模型简介[J]. 地质科技情报, 2002, 21(1): 47-50. doi: 10.3969/j.issn.1000-7849.2002.01.011

    Zhou X, Chen M Y, Liang C S. A brief review on mathematical models to describe geothermal water flow and heat transport[J]. Geological Science and Technology Information, 2002, 21(1): 47-50(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2002.01.011
    [9] 李馨馨, 李典庆, 徐轶. 地热对井系统裂隙岩体三维渗流传热耦合的等效模拟方法[J]. 工程力学, 2019, 36(7): 238-247. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201907027.htm

    Li X X, Li D Q, Xiu Y. Equivalent simulation method of three-dimensional seepage and heat transfer coupling in fractured rock mass of geothermal-borehole system[J]. Engineering Mechanics, 2019, 36(7): 238-247(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201907027.htm
    [10] 朱红光, 易成, 谢和平, 等. 基于立方定律的岩体裂隙非线性流动几何模型[J]. 煤炭学报, 2016, 41(4): 822-828. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201604004.htm

    Zhu H G, Yi C, Xie H P, et al. A new geometric model for non-linear flow in rough-walled fractures based on the cubic law[J]. Jouanal of China Coal Society, 2016, 41(4): 822-828(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201604004.htm
    [11] 许光祥, 张永兴, 哈秋舲. 粗糙裂隙渗流的超立方和次立方定律及其试验研究[J]. 水利学报, 2003, 34(3): 74-79. doi: 10.3321/j.issn:0559-9350.2003.03.014

    Xu G X, Zhang Y X, Ha Q L. Super-cubic and sub-cubic law of rough fracture seepage and its experiments study[J]. Journal of Hydraulic Engineering, 2003, 34(3): 74-79(in Chinese with English abstract). doi: 10.3321/j.issn:0559-9350.2003.03.014
    [12] 高瑜, 叶咸, 夏强. 基于等效连续介质模型的单裂隙渗流数值模拟研究[J]. 地下水, 2016, 38(5): 40-43. doi: 10.3969/j.issn.1004-1184.2016.05.016

    Gao Y, Ye X, Xia Q. Numerical simulation study of single-fracture seepage flow based on equivalent continuum model[J]. Ground Water, 2016, 38(5): 40-43(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1184.2016.05.016
    [13] 单丹丹, 闫铁, 李玮, 等. 单裂隙热储热流耦合数值模拟分析[J]. 当代化工, 2020, 49(4): 716-719, 723. doi: 10.3969/j.issn.1671-0460.2020.04.052

    Shan D D, Yan T, Li W, et al. Numerical simulation and analysis of thermal-hydraulic coupling in a single-fracture thermal reservoir[J]. Contemporary Chemical Industry, 2020, 49(4): 716-719, 723(in Chinese with English abstract). doi: 10.3969/j.issn.1671-0460.2020.04.052
    [14] 张树光, 李志建, 徐义洪, 等. 裂隙岩体流-热耦合传热的三维数值模拟分析[J]. 岩土力学, 2011, 32(8): 2507-2511. doi: 10.3969/j.issn.1000-7598.2011.08.042

    Zhang S G, Li Z J, Xu Y H, et al. Three-dimensional numerical simulation and analysis of fluid-heat coupling heat-transfer in fractured rock mass[J]. Rock and Soil Mechanics, 2011, 32(8): 2507-2511(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2011.08.042
    [15] 柯婷婷, 黄少鹏, 许威, 等. 关中盆地沣西地区地热对井采灌开发模式的数值模拟[J]. 第四纪研究, 2019, 39(5): 1252-1263. https://d.wanfangdata.com.cn/periodical/dsjyj201905018

    Ke T T, Huang S P, Xu W, et al. Numerical modeling of doublet well system for extracting heat from sandstone geothermal reservoir: A case study of Fengxi area, the Guanzhong Basin, NW China[J]. Quaternary Sciences, 2019, 39(5): 1252-1263(in Chinese with English abstract). https://d.wanfangdata.com.cn/periodical/dsjyj201905018
    [16] 杜广林, 周维垣, 赵吉东. 裂隙介质中的多重裂隙网络渗流模型[J]. 岩石力学与工程学报, 2000, 19(增刊1): 1014-1018. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2000S1041.htm

    Du G L, Zhou W H, Zhao J D. Multiple fracture network seepage model for fractured media[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(S1): 1014-1018(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2000S1041.htm
    [17] 翟海珍, 苏正, 凌璐璐, 等. 平行多裂隙模型中换热单元体对EGS釆热的影响[J]. 地球物理学进展, 2016, 31(3): 1399-1405. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201603063.htm

    Zhai H Z, Su Z, Ling L L, et al. Impact of heat transfer unit on EGS heat extraction in the multi-parallel fracture model[J]. Progress in Geophysics, 2016, 31(3): 1399-1405(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201603063.htm
    [18] 肖鹏, 闫飞飞, 窦斌, 等. 增强型地热系统水平井平行多裂隙换热过程数值模拟[J]. 可再生能源, 2019, 37(7): 1091-1099. doi: 10.3969/j.issn.1671-5292.2019.07.024

    Xiao P, Yan F F, Dou B, et al. Numerical simulation on the heat transfer process of parallel multi-fractures in enhanced geothermal system horizontal well[J]. Renewable Energy Resources, 2019, 37(7): 1091-1099(in Chinese with English abstract). doi: 10.3969/j.issn.1671-5292.2019.07.024
    [19] 李海波. CSAMT法在地热资源勘探中的应用[J]. 煤炭技术, 2020, 39(7): 57-58. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202007017.htm

    Li H B. Application of CSAMT in geothermal Resources Exploration[J]. Coal Technology, 2020, 39(7): 57-58(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202007017.htm
    [20] Xiao W J, Windley B F. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6), 1069-1089. http://petrology.oxfordjournals.org/external-ref?access_num=10.1029/2002TC001484&link_type=DOI
    [21] 谢富仁, 张红艳, 崔效锋, 等. 延怀盆地活动断裂运动与现代构造应力场[J]. 地震地质, 2007, 29(4): 693-705. doi: 10.3969/j.issn.0253-4967.2007.04.001

    Xie F R, Zhang H Y, Cui X F, et al. Active fault movement and recent tectonic stress field in Yanhuai basin[J]. Seismology and Geology, 2007, 29(4): 693-705(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2007.04.001
    [22] 李英康, 高锐, 姚聿涛, 等. 华北克拉通北缘-西伯利亚板块南缘的地壳速度结构特征[J]. 地球物理学报, 2014, 57(2): 484-497. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201402014.htm

    Li Y K, Gao R, Yao J T, et al. Crustal velocity structure from the northern margin of the North China Craton to the southern margin of the Siberian plate[J]. Chinese journal of geophysics, 2014, 57(2): 484-497(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201402014.htm
    [23] 张文朋, 申旭辉, 曹忠权, 等. 桑干河阳原-涿鹿段地貌演化[J]. 地震, 2011, 31(4): 108-117. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201104011.htm

    Zhang W P, Shen X H, Cao Z Q, et al. Geomorphic evolution of the Yangyuan-Zhuolu section of Sanggan river, in Shanxi province[J]. Earthquake, 2011, 31(4): 108-117(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201104011.htm
    [24] 智小军. 张家口坝下地区地下热水赋存规律研究[J]. 地下水, 2016, 38(3): 10-11, 75. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201603004.htm

    Zhi X J. Research on underground hot water occurrence regularity in Zhangjiakou dam area[J]. Ground Water, 2016, 38(3): 10-11, 75(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201603004.htm
    [25] 姬广军, 朱吉祥. 三维地质建模技术研究现状[J]. 科技风, 2019(10): 109-110, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-KJFT201910098.htm

    Ji G J, Zhu J X. Research status of 3D geological modeling technology[J]. Technology Wind, 2019(10): 109-110, 122(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KJFT201910098.htm
    [26] 张亮, 姚磊华, 王迎东. 基于COMSOL Multiphysics的三维地质建模方法[J]. 煤田地质与勘探, 2014, 42(6): 14-19. doi: 10.3969/j.issn.1001-1986.2014.06.003

    Zhang L, Yao L H, Wang Y D. 3D geological modeling method based on COMSOL Multiphysics[J]. Coal Geology & Exploration, 2014, 42(6): 14-19(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1986.2014.06.003
    [27] 郭亚亚. 怀涿盆地活动断层特征及地震活动探讨[D]. 石家庄: 石家庄经济学院, 2014: 15-17.

    Gou Y Y. Characteristics of active fault and studies on seismic activity in Huaizhuo Basin[D]. Shijiazhuang: Shijiazhuang University of Economics, 2014: 15-17(in Chinese with English abstract).
    [28] 孙鹏飞, 苏伟杰. 涿怀盆地地下水补排平衡分析计算[J]. 水利科技与经济, 2016, 22(4): 69-70. doi: 10.3969/j.issn.1006-7175.2016.04.025

    Sun P F, Su W J. Analysis and calculation of groundwater recharge and discharge balance in Zhuohuai Basin[J]. Water Conservancy Science and Technology and Economy, 2016, 22(4): 69-70(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7175.2016.04.025
    [29] 陈必光. 地热对井裂隙岩体中渗流传热过程数值模拟方法研究[D]. 北京: 清华大学, 2014.

    Chen B G. Study on numerical methods for coupled fluid flow and heat transfer in fractured rocks of doublet system[D]. Beijing: Tsinghua University, 2014(in Chinese with English abstract).
    [30] 吴涛, 李港. 幂律流体在裂缝-孔隙双重多孔介质中渗流的分形模型[J/OL]. (2020-5-27) [2021-03-28] http://kns.cnki.net/kcms/detail/42.1178.N.20200527.1214.004.html.

    Wu T, Li G. A fractal model of permeability for power-law fluids in porous fracture dual media[J/OL]. (2020-5-27) [2021-03-28] http://kns.cnki.net/kcms/detail/42.1178.N.20200527.1214.004.html(in Chinese with English abstract).
    [31] 王统, 田宜平, 罗莹莹, 等. 基于地质大数据与构造语义约束的断层建模[J]. 地质科技通报, 2020, 39(4): 69-75. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10001.shtml

    Wang T, Tian Y P, Luo Y Y, et al. Fault modeling based on the semantic constraint of geological big data[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 69-75(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract10001.shtml
    [32] 陈国旭, 田宜平, 张夏林, 等. 基于勘探剖面的三维地质模型快速构建及不确定性分析[J]. 地质科技情报, 2019, 38(2): 275-280. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902033.htm

    Chen G X, Tian Y P, Zhang X L. Rapid construction and uncertainty analysis of 3D geological models based on exploration Sections[J]. Geological Science and Technology Information, 2019, 38(2): 275-280(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902033.htm
    [33] 张文彪, 段太忠, 刘彦锋, 等. 定量地质建模技术应用现状与发展趋势[J]. 地质科技情报, 2019, 38(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903029.htm

    Zhang W B, Duan T Z, Liu Y F, et al. Application status and development trend of quantitative geological modeling[J]. Geological Science and Technology Information, 2019, 38(3): 1-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903029.htm
    [34] 胡华斌, 田立富, 孙黎明. 河北怀来-涿鹿盆地更新世岩石地层和生物地层特征及时代[J]. 中国区域地质, 2000, 19(2): 137-143. doi: 10.3969/j.issn.1671-2552.2000.02.005

    Hu H B, Tian L F, Sun L M. Characteristics and ages of the Pleistocene lithostratigraphy and biostratigraphy in the Huailai-Zhuolu basin, Hebei[J]. Regional Geology of China, 2000, 19(2): 137-143(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2000.02.005
    [35] 祖金华, 吴乾蕃, 廉雨方. 延庆-怀来盆地及其邻区地热研究[J]. 地震学报, 1997, 19(4): 442-444. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB704.013.htm

    Zu J H, Wu Q F, Lian Y F. Geothermal research in Yanqing-Huilai Basin and its adjacent areas[J]. Acta Seismologica Sinica, 1997, 19(4): 442-444(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB704.013.htm
    [36] 黄晶. 内部惩罚间断伽辽金方法求解时域流固耦合问题[D]. 重庆: 重庆大学, 2017.

    Huang J. Interior penalty discontinuous Galerkin method solving time-domain fluid-solid interaction problem[D]. Chongqing: Chongqing University, 2017(in Chinese with English abstract).
    [37] 王贵玲, 张薇, 蔺文静, 等. 京津冀地区地热资源成藏模式与潜力研究[J]. 中国地质, 2017, 44(6): 1074-1085. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201706004.htm

    Wang G L, Zhang W, Ling W J. Research on formation mode and development potential of geothermal resources in Beijing-Tianjin-Hebei region[J]. Geology in China, 2017, 44(6): 1074-1085(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201706004.htm
    [38] 李朋威, 何治亮, 罗平, 等. 华北北部地区蓟县系高于庄组-雾迷山组白云岩储层特征与形成主控因素[J]. 石油与天然气地质, 2020, 41(1): 26-36, 49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001004.htm

    Li P W, He Z L, Luo P, et al. Characteristics of and main factors controlling the dolomite reservoir of Gaoyuzhuang-Wumishan Formations in the Jixian System, the north of North China[J]. Oil & Gas Geology, 2020, 41(1): 26-36, 49(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001004.htm
    [39] 雷晓东, 裴艳东, 关伟, 等. 北京地区岩石地层密度特征及界面划分[J]. 地球物理学进展, 2020, 35(3): 836-844. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202003004.htm

    Lei X D, Pei Y D, Guang W, et al. Characteristics of Lithostratigraphic Density and its interface division in Beijing Area[J]. Progress in Geophsics, 2020, 35(3): 836-844(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202003004.htm
    [40] 齐晓飞, 张国斌, 上官拴通, 等. 河北省干热岩地热资源赋存分布研究[J]. 中国煤炭地质, 2018, 30(11): 47-54, 73. doi: 10.3969/j.issn.1674-1803.2018.11.11

    Qi X F, Zhang G B, Shangguan S T, et al. A brief analysis of hot and dry rock geothermal resources hosting and distribution in Hebei province[J]. Coal Geology of China, 2018, 30(11): 47-54, 73(in Chinese with English abstract). doi: 10.3969/j.issn.1674-1803.2018.11.11
    [41] 雷晓东, 胡圣标, 李娟, 等. 北京地区基岩地层热物性参数特征[J]. 地球物理学进展, 2018, 33(5): 1814-1823. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201805007.htm

    Lei X D, Hu S B, Li J, et al. Thermal properties analysis of bedrock in Beijing[J]. Progress in Geophysics, 2018, 33(5): 1814-1823(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201805007.htm
    [42] 王树芳, 庞忠和, 何铁柱, 等. 北京地区碳酸盐岩热储渗透性研究[J]. 工程地质学报, 2014, 22(4): 647-654. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201404013.htm

    Wang S F, Pang Z H, He T Z, et al. Study on the permeability of carbonate rock geothermal reservoir in Beijing[J]. Journal of Engineering Geology, 2014, 22(4): 647-654(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201404013.htm
    [43] 刘明清, 刘敏. 延庆、怀来地区地壳深部磁性构造与地震的研究[J]. 华北地震科学, 1994, 12(3): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HDKD403.006.htm

    Liu M Q, Liu M. A study of relation between magnetic structure in deep crust of Yanqing, Huailai areas and seismicity[J]. North China Earthquake Sciences, 1994, 12(3): 53-58(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HDKD403.006.htm
    [44] 王朱亭, 张超, 姜光政, 等. 雄安新区现今地温场特征及成因机制[J]. 地球物理学报, 2019, 62(11): 4313-4322. doi: 10.6038/cjg2019M0326

    Wang Z T, Zhang C, Jiang G Z, et al. Present-day geothermal field of Xiongan New Area and its heat source mechanism[J]. Chinese Journal of Geophysics, 2019, 62(11): 4313-4322(in Chinese with English abstract). doi: 10.6038/cjg2019M0326
    [45] 张进平. 浅析北京市延庆区西北部地热地质特征[J]. 城市地质, 2019, 14(1): 26-33. doi: 10.3969/j.issn.1007-1903.2019.01.005

    Zhang J P. Analysis on Geothermal Geology Characteristics in the Northwest of Yanqing District, Beijing[J]. Urban Geology, 2019, 14(1): 26-33(in Chinese with English abstract). doi: 10.3969/j.issn.1007-1903.2019.01.005
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  41
  • PDF下载量:  683
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-24

目录

    /

    返回文章
    返回