Unconformable event and its tectonic significance at Middle-Late Mesozoic of Qiangtang terrane, Tibet
-
摘要: 不整合事件对于认识陆陆碰撞具有重要意义。羌塘-拉萨地体碰撞时间一直存在争议,其主要原因是"碰撞时间"定义不同,就不整合事件发生时间来说存在两种定义;一是与碰撞缝合带有关的区域性不整合的时间,早白垩世末(100 Ma);二是洋壳消失,大陆之间陆壳初始的接触时间,盆地边缘不整合事件,即中侏罗世晚期(166 Ma)。针对上述问题,选取2种不同定义下的羌塘盆地内不整合面:北雷错西南与安多114道班地区不整合面进行研究。114道班地区下伏安山岩岩浆锆石U-Pb年龄为77 Ma,结合国内外学者对羌塘-拉萨地体碰撞时间的研究成果,认为羌塘-拉萨地体碰撞,发生强烈相互作用的初始时间为早白垩世末100 Ma,持续时间范围100~75 Ma。北雷错西南陆相地层最大沉积年龄为94 Ma,综合年代学、沉积学以及地层产状,认为该地层为新生代康托组,而非前人中侏罗世晚期"毕洛错组"的认识,进而认为羌塘-拉萨地体之间陆壳初始的接触时间不可能为166 Ma,但是一定早于100 Ma。Abstract: Uncomfortable event is significant to continent collision.Collision timing of Qiangtang-Lhasa terrane has always been controversial, because of the different definition of collision time.There are two definitions of collision time in terms of timing of uncomfortable event.One is connection with regional angular unconformity of collision suture zone at late Early Cretaceous(100 Ma), and the other is connection with angular unconformity in the basin edge with disappeared oceanic crust and initial touch of crust between continents at late Middle Jurassic(166 Ma).Focusing on the issue, this study researched unconformity of two difference definitions in Qiangtang Basin and they are Daoban 114 unconformity in Anduo area and southwest Beileicuo unconformity.U-Pb age of anshanite magmatic zircon is 77 Ma, combined with the collision timing of Qiangtang-Lhasa terrane research result, and we think strong interaction time between Qiangtang and Lhasa terrane was at late Early Cretaceous(100 Ma), continuous range 100-75 Ma.The maximum depositional age of continental stratum in Beileicuo area is 94 Ma.Synthesizing sedimentology, geochronology and attitude stratum, we think the strata deposited after 94 Ma and it was not late Middle Jurassic Biluocuo Formation but Cenozoic Kangtuo Formation.And then, initial touch of crust between Qiangtang-Lhasa terrane was not 166Ma but before 100 Ma.
-
Key words:
- Qiangtang Basin, Tibet /
- unconformable event /
- Mesozoic /
- stratigraphic age /
- tectonic significance
-
图 2 西藏高原大地构造划分图(A)、安多114道班地区区域地质图(B)、北雷错地区区域地质图(C)、114道班地区4BA剖面地层柱状图及火山岩采样位置图(D)、北雷错地区BL17剖面地层柱状图及火山岩砾石采样位置图(E)
Figure 2. Geotectonic division of the Tibetan Plateau(A), geological map of the Daoban 114 area, Anduo, (B)Geological map of the Beileicuo area(C), stratigraphic column of 4BA with sampling locations of the andesite in Daoban 114 area(D), stratigraphic column of BL17 with sampling locations of the andesite gravel in Beileicuo area(E)
图 3 北雷错地区康托组与色哇组角度不整合(a)、安多114道班地区阿布山组与安山岩体以及布曲组角度不整合(近景)(b)、安多114道班地区阿布山组与安山岩体以及布曲组角度不整合(远景)(c)、北雷错安山岩砾石(d)、安多114道班安山岩体(e)、北雷错安山岩砾石镜下特征(f)、安多114道班安山岩镜下特征(g)
Figure 3. Angular unconformity between Kangtuo Formation and Sewa Formation in Beileicuo area(a), angular unconformity between Abushan Formation, andesite and Buqu Formation in Daoban 114 area, Anduo (close shot) (b), angular unconformity between Abushan Formation, andesite and Buqu Formation in Daoban 114 area, Anduo (distant view)(c), andesite gravel in Beileicuo section(d), Andesite in Daoban 114 area, Anduo (e), Microscopic characteristics of andesite gravel in Beileicuo area(f), microscopic characteristics of andesite in Daoban 114 area, Anduo(g)
表 1 北雷错地区康托组安山岩砾石LA-ICPMS U-Pb结果
Table 1. LA-ICPMS U-Pb results of zircon from andesite gravel of Kangtuo Formation in Beileicuo area
测点BL-U2 同位素比值 年龄/Ma 谐和年龄(±1σ Ma) Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ BL-U2-18 0.048 98 0.001 64 0.094 61 0.003 13 0.013 97 0.000 12 147 76 92 3 89.4 0.8 89.4 0.8 0.49 BL-U2-23 0.049 67 0.001 62 0.096 09 0.003 13 0.014 02 0.000 14 180 74 93 3 89.8 0.9 89.8 0.9 0.63 BL-U2-26 0.047 01 0.001 26 0.091 88 0.002 48 0.014 17 0.000 12 50 57 89 2 90.7 0.8 90.7 0.8 0.29 BL-U2-13 0.049 14 0.002 75 0.095 45 0.005 15 0.014 31 0.000 21 154 119 93 5 92 1 92.0 1.0 0.45 BL-U2-22 0.050 73 0.001 50 0.100 97 0.002 99 0.014 38 0.000 13 229 67 98 3 92.1 0.8 92.1 0.8 0.61 BL-U2-21 0.047 66 0.001 64 0.094 41 0.003 13 0.014 41 0.000 16 83 71 92 3 92.2 1 92.2 1.0 0.65 BL-U2-40 0.050 60 0.002 25 0.100 50 0.004 53 0.014 43 0.000 15 222 104 97 4 92.3 1 92.3 1.0 0.48 BL-U2-17 0.047 07 0.001 96 0.093 65 0.003 77 0.014 5 0.0001 7 53 84 91 3 93 1 93.0 1.0 0.75 BL-U2-35 0.046 57 0.002 90 0.094 22 0.006 28 0.014 54 0.000 17 27 144 91 6 93 1.0 93.0 1.0 0.35 BL-U2-04 0.050 54 0.001 10 0.101 81 0.002 21 0.014 62 0.000 12 220 48 98 2 93.5 0.8 93.5 0.8 0.49 BL-U2-37 0.045 44 0.002 64 0.092 40 0.005 69 0.014 71 0.000 17 -31 132 90 5 94 1 94.0 1.0 0.78 BL-U2-39 0.046 45 0.001 97 0.093 96 0.004 22 0.014 64 0.000 16 21 93 91 4 94 1 94.0 1.0 0.41 BL-U2-20 0.046 45 0.001 87 0.094 13 0.003 63 0.014 77 0.000 15 21 79 91 3 94.5 1 94.5 1.0 0.41 BL-U2-14 0.050 10 0.001 51 0.102 53 0.003 14 0.014 82 0.000 16 200 68 99 3 95 1 95.0 1.0 0.31 BL-U2-27 0.048 91 0.001 25 0.101 10 0.002 64 0.014 94 0.000 14 144 59 98 2 95.6 0.9 95.6 0.9 0.39 BL-U2-12 0.049 94 0.001 22 0.103 43 0.002 59 0.014 96 0.000 13 192 56 100 2 95.7 0.8 95.7 0.8 0.41 BL-U2-32 0.046 52 0.001 91 0.096 65 0.004 21 0.014 98 0.000 14 25 91 94 4 95.8 0.9 95.8 0.9 0.34 BL-U2-11 0.049 68 0.001 50 0.102 60 0.002 99 0.014 99 0.000 14 180 66 99 3 95.9 0.9 95.9 0.9 0.51 BL-U2-24 0.046 30 0.001 30 0.095 93 0.002 83 0.014 99 0.000 17 13 56 93 3 96 1 96.0 1.0 0.29 BL-U2-31 0.047 25 0.001 92 0.097 79 0.004 08 0.014 97 0.000 16 62 89 95 4 96 1 96.0 1.0 0.42 BL-U2-06 0.047 17 0.001 30 0.097 40 0.002 59 0.015 02 0.000 13 58 56 94 2 96.1 0.9 96.1 0.9 0.36 BL-U2-29 0.048 23 0.001 36 0.100 06 0.002 85 0.015 04 0.000 14 111 64 97 3 96.2 0.9 96.2 0.9 0.35 BL-U2-08 0.048 94 0.001 38 0.101 79 0.002 73 0.015 09 0.000 13 145 68 98 3 96.5 0.8 96.5 0.8 0.38 BL-U2-02 0.047 23 0.001 06 0.098 35 0.002 12 0.015 13 0.000 14 61 46 95 2 96.8 0.9 96.8 0.9 0.47 BL-U2-33 0.050 73 0.002 74 0.107 98 0.006 30 0.015 15 0.000 17 229 133 104 6 97 1 97.0 1.0 0.45 BL-U2-30 0.047 84 0.001 47 0.101 47 0.003 29 0.015 29 0.000 12 91 72 98 3 97.8 0.8 97.8 0.8 0.40 BL-U2-03 0.048 12 0.001 35 0.102 03 0.003 05 0.015 32 0.000 16 105 66 99 3 98 1 98.0 1.0 0.75 BL-U2-16 0.048 91 0.001 21 0.103 62 0.002 61 0.015 31 0.000 17 143 54 100 2 98 1 98.0 1.0 0.35 BL-U2-19 0.045 22 0.001 07 0.095 82 0.002 32 0.015 33 0.000 16 -9 42 93 2 98 1 98.0 1.0 0.42 BL-U2-28 0.048 72 0.001 08 0.102 91 0.002 36 0.015 32 0.000 16 134 49 99 2 98 1 98.0 1.0 0.36 BL-U2-07 0.047 88 0.001 09 0.103 32 0.002 56 0.015 60 0.000 16 93 54 100 2 100 1 100 1.0 0.40 BL-U2-36 0.048 30 0.003 03 0.107 53 0.007 44 0.015 90 0.000 24 114 152 104 7 102 2 102 2.0 0.35 BL-U2-34 0.048 07 0.003 12 0.123 70 0.008 48 0.018 54 0.000 23 103 151 118 8 118 1 118 1.0 0.59 BL-U2-10 0.049 25 0.001 43 0.179 49 0.005 36 0.026 37 0.000 24 160 68 168 5 168 2 168 2.0 0.47 BL-U2-15 0.053 28 0.002 11 0.297 14 0.011 48 0.040 63 0.000 43 341 86 264 9 257 3 257 3.0 0.53 BL-U2-09 0.059 40 0.002 60 0.580 88 0.024 64 0.072 14 0.001 07 582 88 465 16 449 6 449 6.0 0.67 表 2 安多114道班安山岩LA-ICPMS U-Pb结果
Table 2. LA-ICPMS U-Pb results of zircon from andesite of Daoban 114 area in Anduo
测点4BA02 同位素比值 年龄/Ma 谐和年龄(±1σ Ma) Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 4BA02-02 0.048 42 0.005 12 0.080 81 0.008 50 0.012 10 0.000 29 120 232 79 8 78.0 2 78.0 2.0 0.22 4BA02-01 0.054 36 0.008 78 0.094 72 0.015 15 0.012 64 0.000 38 386 327 92 14 81.0 2 81.0 2.0 0.39 4BA02-03 0.049 82 0.007 82 0.090 01 0.014 03 0.013 10 0.000 37 187 329 88 13 84.0 2 84.0 2.0 0.31 4BA02-04 0.056 06 0.005 83 0.101 92 0.010 50 0.013 19 0.000 33 455 216 99 10 84.0 2 84.0 2.0 0.29 4BA02-06 0.060 87 0.010 61 0.098 48 0.016 95 0.011 74 0.000 40 635 337 95 16 75.0 3 75.0 3.0 0.29 4BA02-05 0.062 96 0.009 67 0.121 51 0.018 37 0.014 00 0.000 48 707 297 116 17 90.0 3 90.0 3.0 0.31 4BA02-07 0.044 58 0.004 99 0.077 44 0.008 63 0.012 60 0.000 30 0 175 76 8 81.0 2 81.0 2.0 0.32 4BA02-08 0.070 94 0.004 81 0.129 72 0.008 69 0.013 26 0.000 31 956 133 124 8 85.0 2 85.0 2.0 0.32 4BA02-09 0.049 87 0.006 23 0.091 26 0.011 30 0.013 27 0.000 35 189 267 89 11 85.0 2 85.0 2.0 0.32 4BA02-10 0.050 82 0.005 83 0.084 88 0.009 65 0.012 11 0.000 31 233 244 83 9 78.0 2 78.0 2.0 0.34 4BA02-11 0.061 99 0.006 65 0.106 63 0.011 25 0.012 48 0.000 36 674 214 103 10 80.0 2 80.0 2.0 0.31 4BA02-12 0.059 06 0.010 42 0.102 07 0.017 78 0.012 54 0.000 45 569 344 99 16 80.0 3 80.0 3.0 0.41 4BA02-13 0.039 88 0.008 08 0.066 69 0.013 44 0.012 13 0.000 38 0 96 66 13 78.0 2 78.0 2.0 0.33 4BA02-14 0.056 55 0.010 42 0.100 82 0.018 34 0.012 93 0.000 48 473 364 98 17 83.0 3 83.0 3.0 0.26 4BA02-15 0.051 63 0.010 33 0.092 03 0.018 26 0.012 93 0.000 45 269 404 89 17 83.0 3 83.0 3.0 0.33 4BA02-16 0.048 67 0.006 65 0.084 82 0.011 50 0.012 64 0.000 34 132 293 83 11 81.0 2 81.0 2.0 0.43 4BA02-17 0.044 56 0.007 14 0.077 15 0.012 27 0.012 56 0.000 35 0 272 76 12 80.0 2 80.0 2.0 0.27 4BA02-18 0.052 91 0.004 44 0.089 94 0.007 50 0.012 33 0.000 28 325 180 87 7 79.0 2 79.0 2.0 0.52 4BA02-19 0.064 25 0.009 61 0.103 23 0.015 27 0.011 65 0.000 36 750 288 100 14 75.0 2 75.0 2.0 0.29 4BA02-20 0.049 25 0.007 31 0.091 22 0.013 44 0.013 43 0.000 37 160 314 89 13 86.0 2 86.0 2.0 0.26 -
[1] Allegre C J, Courtillot V, Tapponnier P. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature, 1984, 307: 17-22. doi: 10.1038/307017a0 [2] Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 1993, 31(4): 357-396. doi: 10.1029/93RG02030 [3] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(28): 211-280. [4] Kapp P, Decelles P, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 19(7/8): 917-932. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsabull&resid=119/7-8/917 [5] Kapp P, Yin A, Haarrison T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Tectonics, 2005, 117: 865-878. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsabull&resid=117/7-8/865 [6] Li Y L, He J, Wang C S, et al. Late Cretaceous K-rich magmatism in central Tibet: Evidence for early elevation of the Tibetan plateau?[J]. Lithos, 2013, 160/161: 1-13. doi: 10.1016/j.lithos.2012.11.019 [7] Li Y L, He J, Wang C S, et al. Cretaceous volcanic rocks in south Qiangtang Terrane: Products of northward subduction of the Bangong-Nujiang Ocean?[J]. Journal of Asian Earth Sciences, 2015, 104: 69-83. doi: 10.1016/j.jseaes.2014.09.033 [8] Ma A L, Hu X M, Garzanti E, et al. Sedimentary and tectonic evolution of the southern Qiangtang Basin: Implications for the Lhasa-Qiangtang collision timing[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(7): 4790-4813. doi: 10.1002/2017JB014211 [9] He H Y, Li Y L, Wang C S, et al. Late Cretaceous(ca. 95? Ma) magnesian andesites in the Biluoco area, southern Qiangtang subterrane, central Tibet: Petrogenetic and tectonic implications[J]. Lithos, 2018, 302/303: 389-404. doi: 10.1016/j.lithos.2018.01.013 [10] Liu D L, Shi R D, Ding L, et al. Late Cretaceous transition from subduction to collision along the Bangong-Nujiang Tethys: New volcanic constraints from central Tibet[J]. Lithos, 2018, 296: 452-470. http://www.sciencedirect.com/science/article/pii/S002449371730395X [11] Chen S S, Fan W M, Shi R D, et al. Removal of deep lithosphere in ancient continental collisional orogens: A case study from central Tibet, China[J]. Geochemistry Geophysics Geosystems, 2017, 18(3): 1225-1243. doi: 10.1002/2016GC006678 [12] 白志达, 徐德斌, 陈梦军, 等. 西藏安多地区粗面岩的特征及其锆石SHRIMP U-Pb定年[J]. 地质通报, 2009, 28(9): 1229-1235. doi: 10.3969/j.issn.1671-2552.2009.09.010Bai Z D, Xu D B, Chen M J, et al. Characteristics and zircon SHRIMP U-Pb dating of the Amdo trachyte, Tibet, China[J]. Geological Bulletin of China, 2009, 28(9): 1229-1235(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2009.09.010 [13] 吴珍汉, 刘志伟, 赵珍, 等. 羌塘盆地隆鄂尼-昂达尔错古油藏逆冲推覆构造隆升[J]. 地质学报, 2016, 90(4): 615-627. doi: 10.3969/j.issn.0001-5717.2016.04.002Wu Z H, Liu Z W, Zhao Z, et al. Thrust and uplift of the Lung'erni Angdarco paleo oil reservoirs in the Qiangtang Basin[J]. Acta Geologica Sinica, 2016, 90(4): 615-627(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.04.002 [14] 吉林省地调院. 帕度错幅1: 25万区域地质调查报告[R]. 长春: 吉林省地质调查院, 2006.Geological Survey Institute of Jilin Province. 1: 250000 Regional Geological Survey Report of the People's Republic of China(Angdarco Sheet)[R]. Changchun: Geological Survey Institute of Jilin Province, 2012(in Chinese). [15] 李廷栋. 青藏高原隆升的过程和机制[J]. 地球学报, 1995, 16(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB501.000.htmLi T D. The Uplifting procees and mechanism of the Qinhai-Tibet Plateau[J]. Acta Geoscientica Sinica, 1995, 16(1): 1-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB501.000.htm [16] 吴瑞忠, 胡承祖, 王成善, 等. 藏北羌塘地区地层系统[C]//佚名. 青藏高原地质文集. 北京: 地质出版社, 1986.Wu R Z, Hu C Z, Wang C S, et al. The stratigraphical system of Qiangtang district in Northern Xizang(Tibet)[C]//Anon. Contribution to the geology of the Qianghai-Xizang(Tibet) plateau(9). Beijing: Geological Publishing House, 1986(in Chinese). [17] 付修根, 王剑, 汪正江, 等. 藏北羌塘盆地胜利河油页岩干酪根特征及碳同位素指示意义[J]. 地球学报, 2009, 30(5): 643-650. doi: 10.3321/j.issn:1006-3021.2009.05.010Fu X G, Wang J, Wamg Z J, et al. Characteristics of kerogens and their carbon isotope implications for the Shengli River Oil Shale in Qiangtang Basin, northern Tibet[J]. Acta Geoscientica Sinica, 2009, 30(5): 643-650(in Chinese with English abstract). doi: 10.3321/j.issn:1006-3021.2009.05.010 [18] 西藏自治区地质矿产局. 西藏自治区区域地质[M]. 北京: 地质出版社, 1995.Bureau of Geology and Mineral Resources of Xizang Autonomous Region. Regional geology of Xizang autonomous region[M]. Beijing: Geological Publishing House, 1995(in Chinese). [19] 成都地质矿产研究所. 青藏高原及邻区地质图(附说明书)(1: 150万)[M]. 成都: 成都地图出版社, 2004.Chengdu Institute of Geology and Mineral Resources, Chinese Academy of Sciences. Geological map of Qinghai-Xizang(Tibet) Plateau and adjacent areas(1: 1500000) attached with a guidebook[M]. Chengdu: Chengdu Cartographic Publishing House, 2004(in Chinese). [20] 吉林省地质调查院. 昂达尔错幅1: 25万域地质调查报告[R]. 长春: 吉林省地质调查院, 2006.Geological Survey Institute of Jilin Province. 1: 250000 regional geological survey report of the People's Republic of China(Angdarco Sheet)[R]. Changchun: Geological Survey Institute of Jilin Province, 2016(in Chinese). [21] 钟华明, 刘俊, 童劲松, 等. 羌塘西北部松西地区康托组火山岩年龄及意义[J]. 安徽地质, 2008, 18(2): 92-94. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ200802004.htmZhong H M, Liu J, Tong J S, et al. Age and significance for the volcanic rocks of Kangtuo Formation Songxi region in northwest of Qiangtang[J]. Geology of Anhui, 2008, 18(2): 92-94. (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ200802004.htm [22] 李才, 黄小鹏, 牟世勇, 等. 藏北羌塘南部走构由茶错地区火山岩定年与康托组时代的厘定[J]. 地质通报, 2006, 25(21): 226-228. doi: 10.3969/j.issn.1671-2552.2006.01.035Li C, Huang X P, Mou S Y, et al. Age dating of the zougouchacuo volcanic rocks and age determination of the Kangtog Formation in southern Qiangtang, northern Tibet, China[J]. Geological Bulletin of China, 2006, 25(1): 226-228(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2006.01.035 [23] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2009, 51(1/2): 537-571. [24] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4 [25] Andersen T. Correction of common lead in U-Pb analyses that do not report 204 Pb[J]. Chemical Geology, 2002, 192(1): 59-79. http://www.sciencedirect.com/science/article/pii/S000925410200195X [26] Ludwig K R. User's manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel[R]. Berkeley: Berkeley Geochronology Center, 2003. [27] 陈杰, Heennance R V, Brubank D W, 等. 中国西南天山西域砾岩的磁性地层年代与地质意义[J]. 第四纪研究, 2007, 27(4): 576-587. doi: 10.3321/j.issn:1001-7410.2007.04.014Chen J, Heermance R V, Brubank D W, et al. Magnetochomology and its implications of Xiyu conglomerate in the southwestern Chinese Tianshan foreland[J]. Quaternary Sciences, 2007, 27(4): 576-587(in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.2007.04.014 [28] Zhang P Z, Molnar P, Downs W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 2001, 410: 891-897. doi: 10.1038/35073504 [29] Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288: 115-125. doi: 10.1016/j.epsl.2009.09.013 [30] 吴珍汉, 吴学文, 赵珍, 等. 羌塘地块南部晚白垩世火山岩离子探针测年及其对红层时代的约束[J]. 地球学报, 2014, 35(5): 567-572. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201405008.htmWu Z H, Wu X W, Zhao Z, et al. Shrimp U-Pb isotopic dating of the Late Cretaceous volcanic rocks and its chronological constraint on the red-beds in southern Qiangtang Block[J]. Acta Geoscientica Sinica, 2014, 35(5): 567-572(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201405008.htm [31] Sun G Y, Hu X M, Sinclair H D, et al. Late Cretaceous evolution of the Coqen Basin(Lhasa terrane) and implications for early topographic growth on the Tibetan Plateau[J]. Geological Society of America Bulletin, 2015, 127: 1001-1020. http://www.researchgate.net/profile/Xiumian_Hu/publication/273127198_Late_Cretaceous_evolution_of_the_Coqen_Basin_(Lhasa_terrane)_and_implications_for_early_topographic_growth_on_the_Tibetan_Plateau/links/54f90e540cf210398e972eef.pdf [32] Lai W, Hu X M, Eduardo G, et al. Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous(ca. 92 Ma)[J]. GSA Bulletin, 2018, 131(11/12): 1823-1836. http://www.researchgate.net/publication/332364546_Initial_growth_of_the_Northern_Lhasaplano_Tibetan_Plateau_in_the_early_Late_Cretaceous_ca_92_Ma [33] Zhu D C, Mo X X, Niu Y L, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet: Chemical[J]. Geology, 2009, 268: 298-312. http://www.sciencedirect.com/science/article/pii/S0009254109003878 [34] Fu X G, Wang J, Qu W J, et al. Re-Os(ICP-MS) dating of marine oil shale in the Qiangtang Basin, northern Tibet[J]. China Oil Shale, 2008, 25(1): 47-55. doi: 10.3176/oil.2008.1.06 [35] 方德庆, 云金表, 李椿. 北羌塘盆地中部雪山组时代讨论[J]. 地层学杂志, 2002, 26(1): 68-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200201010.htmFang D Q, Yun J B, Li C. Discussion of the Xueshan Formation in the north of Qiangtang Basin, Qinghai-Tibet Plateau[J]. Journal of Stratigraphy, 2002, 26(1): 68-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200201010.htm [36] 王立成, 魏玉帅. 西藏羌塘盆地白垩纪中期构造事件的磷灰石裂变径迹证据[J]. 岩石学报, 2013, 29(3): 1039-1047. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303025.htmWang L C, Wei Y S. Apatite fission track thermochronology evidence for the Mid-Cretaceous tectonic event in the Qiangtang Basin, Tibet[J]. Acta Petrologica Sinica, 2013, 29(3): 1039-1047(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303025.htm [37] 李亚林, 王成善, 黄继钧. 羌塘盆地褶皱变形特征、定型时间及其与油气的关系[J]. 石油与天然气地质, 2008, 29(3): 283-289. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200803004.htmLi Y L, Wang C S, Huang J J. Characteristics and finalizing age of the folds in Qiangtang Basin and relationship with the oil-gas accumulation[J]. Oil & Gas Geology, 2008, 29(3): 283-289(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200803004.htm [38] Li Y L, He J, Han Z P, et al. Late Jurassic sodium-rich adakitic intrusive rocks in the southern Qiangtang terrane, central Tibet, and their implications for the Bangong-Nujiang Ocean subduction[J]. Lithos, 2016, 245: 34-46. doi: 10.1016/j.lithos.2015.10.014 [39] Baxter A T, Aitchison J C, Zyabrev S V. Radiolarian age constraints on Mesotethyan ocean evolution, and their implications for development of the Bangong-Nujiang suture, Tibet[J]. Journal of the Geological Society, 2009, 166(4): 689-694. http://www.onacademic.com/detail/journal_1000039781475310_9a4c.html [40] Girardeau J, Marcoux J, Allegre C J, et al. Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet[J]. Nature, 1984, 307: 27-31. doi: 10.1038/307027a0 [41] 朱弟成, 潘桂棠, 莫宣学, 等. 青藏高原中部中生代OIB型玄武岩的识别: 年代学、地球化学及其构造环境[J]. 地质学报, 2006, 80(9): 1312-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200609008.htmZhu D C, Pan G T, Mo X X, et al. Identification for the Mesozoic OIB-type basalts in central Qinghai-Tibetan Plateau: Geochronology, geochemistry and their tectonic Setting[J]. Acta Geologica Sinica, 2006, 80(9): 1312-1328(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200609008.htm [42] 胡修棉, 王建刚, 安慰, 等. 利用沉积记录精确约束印度-亚洲大陆碰撞时间与过程[J]. 中国科学: 地球科学, 2017, 47: 261-283. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201703001.htmHu X M, Wang J G, An W, et al. Constraining the timing of the India-Asia continental collision by the sedimentary record[J]. Science China: Earth Sciences, 2017, 47: 261-283(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201703001.htm [43] Hu X M, Garzanti E, Wang J, et al. The timing of India-Asia collision onset: Facts, theories, controversies[J]. Earth-Sci. Rev., 2016, 160: 264-299. http://www.sciencedirect.com/science/article/pii/S0012825216302033 [44] Hu X M, Sinclair H D, Wang J G, et al. Late Cretaceous-Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: Implications for the timing of India-Asia initial collision[J]. Basin Res., 2012, 24: 520-543. doi: 10.1111/j.1365-2117.2012.00543.x [45] Murphy M A, Yin A, Harrison T M, et al. Did the Indo-Asian collision alone create the Tibetan Plateau?[J]. Geology, 1997, 25(8): 719-722. [46] Kapp P, DeCelles P G. Mesizoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses[J]. American Journal of Science, 2019, 319(3): 159-254. http://www.researchgate.net/publication/333176296_Mesozoic-Cenozoic_geological_evolution_of_the_Himalayan-Tibetan_orogen_and_working_tectonic_hypotheses [47] Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asiacan be interpreted as results of the India-Eurasia collision[J]. Science, 1975, 189: 419-426. http://www.ncbi.nlm.nih.gov/pubmed/17781869 [48] 牛晓路, 李国彪. 藏南东特提斯最高海相层研究进展及其地质意义[J]. 地质科技情报, 2017, 36(2): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201702004.htmNiu X L, Li G B. Advance in the research on the youngest marine sedimentaryof Neo-Tethys in southern Tibet and its geological implication[J]. Geological Science and Technology Information, 2017, 36(2): 29-35(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201702004.htm [49] 白永健, 倪化勇, 葛华. 青藏高原东南缘活动断裂地质灾害效应研究现状[J]. 地质力学学报, 2019, 25(6): 1116-1128. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201906030.htmBai Y J, Ni H Y, Ge H. Aavances in research on the geohazard effect of active faults on the sourtheastern margin of the Tibentan Plateau[J]. Journal of Geomechanics, 2019, 25(6): 1116-1128(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201906030.htm