Sensitivity analysis method of swelling of paleo-clay based on rough set theory and response surface method
-
摘要: 评价老黏土膨胀性等级时出现的误差主要源于多因素在参数统计上的不确定性,对此提出老黏土膨胀敏感性分析方法。结合粗糙集理论分析各因素的敏感性并确立主导因素,进而构建老黏土膨胀性等级的多因素定量评价模型,随后通过响应面法,分析主导因素间参数不确定性的交互作用对评价结果的影响。襄阳城区老黏土研究表明,自由膨胀率和体缩率为影响评价结果的主导与次主导因素,二者参数变化产生的交互作用对膨胀性评价等级影响较显著。当体缩率统计值较大时,随着自由膨胀率的上升,膨胀性评价等级变幅较大,偏大的自由膨胀率将高估老黏土的膨胀性,致使评价过于保守,偏小的自由膨胀率则会对其低估,导致结果较不可信;而当体缩率统计值较小时,评价等级随自由膨胀率的上升变化不大,因此评价结果较为准确。所得结论可为老黏土膨胀性评价与分类工作提供参考。Abstract: The error in evaluating the swelling grade of paleo-clay is mainly due to the statistical uncertainty of many factors.Therefore, a sensitivity analysis method for the swelling of old clay is proposed.Based on rough set theory, this paper analyzes the sensitivity of various factors to the swelling properties of paleo-clay and establishes the dominant factors, and then constructs a multi-factor quantitative evaluation model for the swelling properties of paleo-clay.Subsequently, the influence law of the interaction between dominant factors on the evaluation grade is analyzed.The study of the paleo-clay in Xiangyang urban area shows that the free expansion rate and the volume shrinkage rate are the dominant and secondary dominant factors affecting the expansion evaluation, and the interaction between the change of two has a significant impact on the expansion evaluation grade.When the statistical value of volume shrinkage rate is large, as the free expansion rate rises, the swelling evaluation grade changes greatly.A large free expansion rate may overestimate the swelling of the paleo-clay, causing the evaluation to be too conservative, and the free expansion rate is too small.The expansion rate may be underestimated, resulting in less credible results; when the statistical value of volume shrinkage rate is small, the expansion evaluation grade does not change much with the increase of the free expansion rate, so the evaluation result more accurate.The conclusions obtained can provide references for the evaluation and classification of paleo-clay swelling.
-
Key words:
- paleo-clay /
- swelling /
- uncertainty /
- rough set theory /
- response surface method /
- sensitivity analysis
-
表 1 老黏土试样物理指标
Table 1. Indices of physical properties for paleo-clay
土样编号 W/% Fs/% WL/% Ip δsi/% δv/% TY01 24.20 49.7 41.0 19.2 4.07 17.2 TY02 24.80 49.7 38.6 16.2 6.07 16.7 TY03 24.16 52.4 39.0 16.7 4.50 17.7 TY04 24.80 45.0 35.9 15.9 4.78 15.9 TY05 25.6 58.3 42.5 19.0 5.61 18.7 TY06 25.31 60.0 39.7 17.1 5.20 15.0 TY07 25.10 45.0 40.5 16.1 4.10 16.2 TY08 24.66 42.3 37.7 20.0 4.68 18.2 TY09 24.52 34.0 34.1 14.5 2.50 7.4 TY10 28.10 76.0 52.5 23.5 6.50 19.2 注:W.天然含水量;Fs.自由膨胀率;WL.液限;Ip.塑性指数;δsi.线缩率;δv.体缩率;下同 表 2 试样数据离散规则
Table 2. The rule of data discretization
分类标准 非膨胀 弱膨胀 中膨胀 强膨胀 1 2 3 4 WL/% ≤40 40~45 45~50 50~60 Ip ≤10 10~18 18~25 25~32 Fs/% ≤40 40~65 65~90 90~115 δv/% ≤8 8~16 16~23 23~30 δsi/% ≤2 2~5 5~8 8~11 W/% 45~55 35~45 25~35 ≤25 表 3 物理指标离散元数值
Table 3. Discrete element values of physical properties
土样编号 W/% Fs/% WL/% Ip δsi/% δv/% TY01 4 2 2 3 2 3 TY02 4 2 1 2 3 3 TY03 4 2 1 2 2 3 TY04 4 2 1 2 2 2 TY05 3 2 2 3 3 3 TY06 3 2 1 2 3 2 TY07 3 2 2 2 2 3 TY08 4 2 1 3 2 3 TY09 4 1 1 2 2 1 TY10 3 3 4 3 3 3 表 4 隶属函数边界值
Table 4. Rule of data discretization
边界值 σ1 σ2 σ3 σ4 WL/% 40 45 50 60 Ip 10 18 25 32 Fs/% 40 65 90 115 δv/% 8 16 23 30 δsi/% 2 5 8 11 表 5 老黏土膨胀性评价标准
Table 5. Evaluation standard for expansion degree of paleo-clay
D 评价等级 D 评价等级 1.00~1.25 非膨胀 2.50~2.75 中主弱次 1.25~1.50 非主弱次 2.75~3.25 中膨胀 1.50~1.75 弱主非次 3.25~3.50 中主强次 1.75~2.25 弱膨胀 3.50~3.75 强主中次 2.25~2.50 弱主中次 3.75~4.00 强膨胀 表 6 老黏土膨胀性评价结果
Table 6. Evaluation result for expansion degree of paleo-clay
表 7 响应面试验变量与水平
Table 7. Factors and levels of response surface test
因素 水平 -1 0 1 A-Fs/% 34 55 76 B-δsi/ % 2.5 4.5 6.5 C-δv/% 7.4 13.3 19.2 表 8 响应面试验设计与结果
Table 8. Design and results of response surface test
方案 Fs/% δsi/ % δv/% D 1 34 4.5 7.4 1.767 2 34 2.5 13.3 1.799 3 76 6.5 13.3 2.664 4 55 2.5 19.2 2.270 5 55 4.5 13.3 2.153 6 55 4.5 13.3 2.153 7 76 2.5 13.3 2.375 8 55 6.5 19.2 2.560 9 55 2.5 7.4 1.820 10 55 4.5 13.3 2.153 11 76 4.5 7.4 2.257 12 55 4.5 13.3 2.153 13 34 6.5 13.3 2.098 14 76 4.5 19.2 2.769 15 55 4.5 13.3 2.153 16 34 4.5 19.2 2.210 17 55 6.5 7.4 2.112 表 9 响应面模型的方差分析
Table 9. Variance analysis of response surface model
来源 平方和 自由度 均方和 F值 P值 模型 1.23 9 0.14 649.86 < 0.000 1 A-Fs 0.60 1 0.60 2 860.28 < 0.000 1 B-δsi 0.17 1 0.17 815.19 < 0.000 1 C-δv 0.43 1 0.43 2 043.41 < 0.000 1 AB 2.5×10-5 1 2.5×10-5 0.12 0.740 1 AC 1.2×10-3 1 1.2×10-3 5.77 0.047 3 BC 1.0×10-6 1 1.0×10-6 4.8×10-3 0.946 9 A2 0.021 1 0.021 99.84 < 0.000 1 B2 4.6×10-4 1 4.6×10-4 2.19 0.182 4 C2 3.1×10-3 1 3.1×10-3 14.68 0.006 4 R2=0.998 8 RAdj2=0.997 3 RPred2=0.980 9 -
[1] Wang M W, Li J, Song G, et al. Moisture migration tests on unsaturated expansive clays in Hefei, China[J]. Applied Clay Science, 2013, 79: 30-35. doi: 10.1016/j.clay.2013.02.024 [2] 胡雪松, 唐朝晖, 万佳文, 等. 煤矸石换填膨胀土路基的沉降研究[J]. 地质科技情报, 2017, 36(6): 261-266. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201706031.htmHu X S, Tang Z H, Wan J W, et al. Replacing expansive soil with coal gangue in subgrade settlement[J]. Geological Science and Technology Information, 2017, 36(6): 261-266(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201706031.htm [3] 梁树, 谢强, 郭永春, 等. 降雨入渗条件下膨胀土基坑边坡离心试验[J]. 地质科技情报, 2019, 38(2): 249-255. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902029.htmLiang S, Xie Q, Guo Y C, et al. Centrifugal test of the expansive soil foundation slope under rainfall infiltration[J]. Geological Science and Technology Information, 2019, 38(2): 249-255(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902029.htm [4] 易顺民, 晏同珍. 膨胀土判别与分类的人工神经网络方法[J]. 地质科技情报, 1995, 14(3): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ503.015.htmYi S M, Yan T Z. Man-made neural network method for discrimination and classification of expansion soil[J]. Geological Science and Technology Information, 1995, 14(3): 91-94(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ503.015.htm [5] 曾志雄, 田海, 黄珏皓. 基于云模型的膨胀土胀缩等级分类[J]. 长江科学院院报, 2016, 33(2): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201602019.htmZeng Z X, Tian H, Huang J H. Classification of swelling-shrinkage grade of expansive soils based on cloud mode[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(2): 80-85(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201602019.htm [6] 张慧颖, 曾昆, 王金艳. 膨胀土分类的灰色变权聚类法[J]. 数学的实践与认识, 2012, 42(3): 61-67. doi: 10.3969/j.issn.1000-0984.2012.03.010Zhang H Y, Zeng K, Wang J Y. The method of classification of expansive soil by variable weight grey clustering[J]. Journal of Mathematics in Practice and Theory, 2012, 42(3): 61-67(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0984.2012.03.010 [7] 周苏华, 周帅康, 张运强, 等. 基于支持向量机的膨胀土胀缩等级预测[J]. 中国地质灾害与防治学报, 2021, 32(1): 117-126.Zhou S H, Zhou S K, Zhang Y Q, et al. Predicting of swelling-shrinking level of expansive soil using support vector regression[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 117-126(in Chinese with English abstract). [8] 师旭超, 郭志涛. 膨胀土等级判别的遗传支持向量机多分类方法[J]. 土木建筑与环境工程, 2009, 31(4): 44-48, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN200904009.htmShi X C, Guo Z T. Multi-classification method of GA-SVM on identifying grade of expansive soils[J]. Journal of Civil, Architectural and Environmental Engineering, 2009, 31(4): 44-48, 59(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN200904009.htm [9] 宫凤强, 李夕兵. 膨胀土胀缩等级分类中的距离判别分析法[J]. 岩土工程学报, 2007, 29(3): 463-466. doi: 10.3321/j.issn:1000-4548.2007.03.026Gong F Q, Li X B. Distance discriminant analysis to the classification of the grade of shrink and expansion for the expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 463-466(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2007.03.026 [10] 陈建宏, 李小龙, 梁伟章. 膨胀土分类的PCA-ELM模型及应用[J]. 长江科学院院报, 2018, 35(12): 96-101. doi: 10.11988/ckyyb.20170674Chen J H, Li X L, Liang W Z. PCA-ELM Model for classification of expansive soil and its application[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(12): 96-101(in Chinese with English abstract). doi: 10.11988/ckyyb.20170674 [11] 高树增, 张雁. 基于熵权直觉模糊集的改良膨胀土胀缩性等级评价[J]. 河南理工大学学报: 自然科学版, 2020, 39(3): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB202003018.htmGao S Z, Zhang Y. Evaluation of expansion and shrinkage grade of improved expansive soil based on entropy weight intuitionistic fuzzy set[J]. Journal of Henan University of Technology: Natural Science Edition, 2020, 39(3): 131-138(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB202003018.htm [12] 何洋. 皖江经济带膨胀土工程性质分类与分区研究[D]. 合肥: 合肥工业大学, 2018.He Y. Study on engineering classification and division of expansive soil in Wanjiang economic belt[D]. Hefei: Hefei University of Technology, 2018(in Chinese with English abstract). [13] 阮永芬, 高春钦, 李志伟, 等. 基于改进AHP与熵权法的膨胀土胀缩等级云模型评价[J]. 江苏大学学报: 自然科学版, 2017, 38(2): 218-223. doi: 10.3969/j.issn.1671-7775.2017.02.016Ruan Y F, Gao C Q, Li Z W, et al. Cloud model evaluation of swell-shrink grade of swelling soil based on improved analytic hierarchy process and entropy weight method[J]. Journal of Jiangsu University: Natural Science Edition, 2017, 38(2): 218-223(in Chinese with English abstract). doi: 10.3969/j.issn.1671-7775.2017.02.016 [14] 王欢, 凡超文, 韩长玉. 弱膨胀土膨胀性判别与分级方法研究[J]. 河南大学学报, 2009, 49(2): 235-241. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZR201902017.htmWang H, Fan C W, Han C Y. Study on the method of distinguishing and classifying the expansibility of weak expansive soil[J]. Journal of Henan University: Natural Science Edition, 2019, 49(2): 235-241(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HDZR201902017.htm [15] 詹云军, 胡光道, 吴艳艳. 基于高光谱粗糙集分析的矿化信息挖掘[J]. 地质科技情报, 2009, 28(3): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200903010.htmZhan Y J, Hu G D, Wu Y Y. Extracting mineralization information by hyperspectral analysis based on rough set theory[J]. Geological Science and Technology Information, 2009, 28(3): 63-66(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200903010.htm [16] 张乐文, 邱道宏, 李术才, 等. 基于粗糙集和理想点法的隧道围岩分类研究[J]. 岩土力学, 2011, 32(增刊1): 171-175. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1031.htmZhang L W, Qiu D H, Li S C, et al. Study of tunnel surrounding rock classification based on rough set and ideal point method[J]. Rock and Soil Mechanics, 2011, 32(S1): 171-175(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1031.htm [17] 张海荣, 何胜林, 吴进波, 等. 基于Logistic统计的模糊判别法在储层流体识别中的应用[J]. 地质科技情报, 2017, 36(2): 194-197. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201702025.htmZhang H R, He S L, Wu J B, et al. Application offuzzy discrimination method based on logistic statistics in reservoir fluid identification[J]. Geological Science and Technology Information, 2017, 36(2): 194-197(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201702025.htm [18] 孙彭林. 基于直觉模糊集的膨胀土胀缩等级分类[J]. 地下空间与工程学报, 2019, 15(增刊1): 182-187. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2019S1028.htmSun P L. Classification of swelling-shrinkage grade of expansive soils based on intuitionistic fuzzy sets[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S1): 182-187(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2019S1028.htm [19] 城乡建设环境保护部. 膨胀土地区建筑技术规范[M]. 北京: 中国计划出版社, 2013.Ministry of Urban and Rural Construction and Environmental Protection. Technical code for buildings in expansive soil regions[M]. Beijing: China Planning Press, 2013(in Chinese). [20] 佚名. JTG D30-2015公路路基设计规范[M]. 北京: 人民交通出版社股份有限公司, 2015: 63-67.Anon. Specifications fordesign of highway subgrades: JTG D30-2015[M]. Beijing: People's Communications Publishing House Co., Ltd. 2015: 63-67(in Chinese). [21] Mason R L, Gunst R F, Hess J L. Statistical design and experiments with applications to engineering and science[M]. New York: John Wiley and Sons Publication, 2003. [22] Varsha Y, Jahangeer A, Chandra G M. Biosorption of methylene blue Dye from textile-industry wastewater onto sugarcane bagasse: Response surface modeling, isotherms, kinetic and thermodynamic modeling[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25(1): 04020067. doi: 10.1061/(ASCE)HZ.2153-5515.0000572 [23] 杜毅, 晏鄂川, 蔡静森, 等. 断续结构面控制的危岩稳定可靠度分析方法[J]. 哈尔滨工业大学学报, 2019, 51(8): 120-127. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201908018.htmDu Y, Yan E C, Cai J S, et al. Reliability analysis method on unstable rock mass controlled by discontinuous structure[J]. Journal of Harbin Institute of Technology, 2019, 51(8): 120-127(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201908018.htm [24] Du Y, Yan E C, Gao X, et al. Identification of the main control factors and failure modes for the failure of Baiyuzui landslide control project[J]. Geotechnical and Geological Engineering, 2021, 39: 3499-3516. doi: 10.1007/s10706-021-01707-0 [25] Ranjbari E, Hadjmohammadi M R. Optimization of magnetic stirring assisted dispersive liquid-liquid microextraction of rhodamine B and rhodamine 6G by response surface methodology: Application in water samples, soft drink, and cosmetic products[J]. Talanta, 2015, 139: 216-225. DOI: 10.1016/j.talanta.2015.02.051. [26] 刘特洪. 工程建设中的膨胀土问题[M]. 北京: 中国建筑工业出版社, 1997.Liu T H. Expansive soil problems in engineering construction[M]. Beijing: China Architecture & Building Press, 1997(in Chinese). [27] 戴张俊, 陈善雄, 罗红明, 等. 南水北调中线膨胀土/岩微观特征及其性质研究[J]. 岩土工程学报, 2013, 35(5): 948-954. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305024.htmDai Z J, Chen S X, Luo H M, et al. Microstructure and characteristics of expansive soil and rock of middle route of South-to-North Water Diversion Project[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 948-954(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305024.htm [28] 杨俊, 童磊, 张国栋. 初始含水率对风化砂改良膨胀土无侧限抗压强度的影响[J]. 地质科技情报, 2014, 33(6): 213-218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201406032.htmYang J, Tong L, Zhang G D. Initial moisture content influence on the unconfined compressive strength of weathered sand improved expansive soil[J]. Geological Science and Technology Information, 2014, 33(6): 213-218(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201406032.htm [29] 柯尊敬, 刘楚祥. 对铁道工程中膨胀土判别和分类的看法[J]. 路基工程, 1986(4): 45-62. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC198604005.htmKe Z J, Liu C X. Views on identification and classification of expansive soil in railway engineering[J]. Subgrade Engineering, 1986(4): 45-62(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC198604005.htm