Quantitative characterization of ichnology based on CT scan: A case study of Mackay-Ⅲ oil sands, Canada
-
摘要: 根据高分辨率岩心照片、全岩心CT扫描和测井资料,以加拿大麦凯Ⅲ油砂区块下白垩统McMurray组为研究对象,开展了遗迹化石属种识别、定量表征及其空间分布特征研究。在划分目的层岩相类型的基础上,综合生物扰动指数(BI)、遗迹尺寸多样性指数(SDI)和围岩平均粒径,提出了生物扰动综合指数(BCI),并采用序贯高斯随机模拟建立了目的层BCI三维地质模型。结果表明:目的层发育9种碎屑岩岩相和9属遗迹化石。岩相以富含油块状中粒砂岩相、富生物扰动细粒砂岩相和富生物扰动泥质粉砂岩相为主,遗迹化石以Skoliths、Palaeophycus和Planolites为主。根据BCI模型,可将全区划分为Ⅰ类弱生物扰动(BCI < 1.5),Ⅱ类中等生物扰动(1.5<BCI < 3)和Ⅲ类强生物扰动(BCI>3)区域。本研究为定量表征遗迹化石的发育特征和空间分布提供了新的思路与方法。Abstract: Based on high-resolution core photos, CT scan pictures, and well logging, the classification, features and spatial distributions of trace fossils in McMurray Formation, Lower Cretaceous, Mackay-III oil sands, Canada, were characterized quantitatively.Based on lithofacies, a new parameter, bioturbation comprehensive index(BCI), was proposed by combining bioturbation index(BI), size diversity index(SDI), and the mean grain size of hostrock.A three-dimension BCI model was built by sequential Gaussian stochastic simulation.Results show that there are nine lithofacies and nine genera trace fossils in McMurray Formation.Lithofacies were dominated by oil saturated medium-grained sandstone, high bioturbation fine-grained sandstone, and high bioturbation muddy siltstone.Trace fossils were dominated by Skoliths, Palaeophycus, and Planolites. According to BCI model, the study area was subdivided into Type Ⅰ weak Bioturbation(BCI < 1.5), Type Ⅱ moderate bioturbation(1.5<BCI < 3) and Type Ⅲ strong bioturbation(BCI>3).This paper provides a novel method and process to characterize the features and spatial distributions of trace fossils quantitatively.
-
Key words:
- Canada oil sands /
- CT scan /
- lithofacies division /
- trace fossils /
- quantitative characterization
-
图 2 麦凯Ⅲ区块McMurray组典型岩相
a.1032井, 159.04~159.79 m, 岩相F1; b.0433井,189.67~190.42 m, 岩相F2; c.0704井, 187.39~188.14 m, 岩相F3; d.0805井, 165.67~166.42 m, 岩相F4; e.1232井,184.58~185.33 m, 岩相F5; f.0432井, 173.89~174.64 m, 岩相F6; g.0433, 163.27~164.02 m, 岩相F7; h.0704井, 170.06~170.81 m, 岩相F8; i.0432井, 191.89~192.64 m, 岩相F9, 岩心筒高75 cm,宽7.5 cm
Figure 2. Typical lithofacies of the McMurray Formation, Mackay-Ⅲ
图 3 麦凯Ⅲ工区McMurray组遗迹化石及实体化石
a.1232井, 164.5 m, BI=1~4; b.0504井, 166 m, BI=2~4; c.0432井, 173.60 m, BI=1~3; d.0432井, 164.15 m, BI=3; e.0432井, 164.65 m, BI=4~6; f.0504井, 173.5 m, BI=1~2; g.0832井, 161.80 m, BI=4~5; h.0805井, 166.70 m, BI=6; i.0828井, 152.75 m, BI=4; j.0833井, 183.90 m, BI=1; k.1032井, 166.25 m, BI=6;As.Asterosoma; Ch.Chondrites; Op.Ophiomorpha; Pa.Palaeophycus; Pl.Planolites; Ro.Rosselia; Sk.Skolithos; Te.Teichichnus; Th.Thalassinoides; DML.双泥披层; Bi.双壳类
Figure 3. Identification of trace fossils, McMurray Formation, Mackay-Ⅲ
表 1 麦凯Ⅲ工区McMurray组典型岩相特征
Table 1. Analysis of typical lithofacies of the McMurray Formation, Mackay-Ⅲ
岩相 岩相描述 沉积构造 生物遗迹特征 环境解释 F1 以细砂岩为主,少见突变面,正韵律,薄砂层,平均粒径0.203 mm 交错层理,平行纹层,波痕交错纹层,块状砂岩,发育砂泥岩互层 遗迹分异度低、中到高密度,包括: Skolithos, Planolites 潮汐砂坝 F2 极细到中砂岩,可见突变面,正韵律,偶见绿泥石。平均粒径0.202 mm 平行至低角度纹层,少见丘状交错层理和波痕纹层 分异度和密度皆为低到中等,包括: Palaeophycus, Asterosoma, Planolites, Thalassinoides, Rosselia, Teichichnus, Skolithos 潮上带 F3 极细到细砂岩,偶见突变面,正韵律,薄砂层,平均粒径0.135 mm 波状层理,平行纹层,少见丘状交错层理,韵律性砂泥岩互层,偶见泥砾 分异度和密度皆为中到高等,Skolithos-Cruziana遗迹相组合; 包括: Asterosoma, Rosselia, Thalassionides 潮汐砂坝
边缘F4 泥质砂岩至极细砂岩,发育突变面,正韵律,薄砂层, 平均粒径0.129 mm 波状至波痕交错纹层,以及平行纹层,波状泥质和泥质砂岩交替发育 中等分异度、中到高密度遗迹组合,包括: Thalassinoides, Planolites, Palaeophycus, Asterosoma, Skolithos, Teichichnus 浅海陆棚
潮下带F5 细砂岩,反韵律,偶见突变面,薄砂层。岩心可见大量稳定连续的泥质纹层,平均粒径0.143 mm 波状韵律性砂泥岩互层 高分异度、高密度遗迹组合,包括: Asterosoma, Thalassinoides, Planolites, Rosselia 潮汐砂坝
坝体边缘F6 细砂岩,反韵律,偶见突变面。发育零星泥质纹层,平均粒径0.124 mm 波状韵律性砂泥岩互层 高分异度、高密度遗迹组合,包括: Asterosoma, Thalassinoides, Planolites, Rosselia 潮汐砂坝
坝体边缘F7 深灰色、纹层状泥岩,少见突变面,正韵律。平均粒径0.117 mm 无明显结构特征,泥质纹层中可见平行至低角度交错层理 低分异度和中到高密度遗迹组合,Chondrites 浅海陆棚 F8 泥质砂层夹粉砂岩,正韵律,常见突变面,薄砂层。平均粒径0.117 mm 平行纹层,生物扰动泥质纹层 低分异度、中到高密度遗迹组合,包括: Chondrites, Teichichnus, Asterosoma 浅海陆棚潮下带 F9 极细到中粒砂岩,偶见突变面,正韵律,薄砂层,平均粒径0.148 mm 波痕交错纹层,平行纹层,小型交错层理,波状层理,波状砂泥岩互层 低到中等分异度、中密度遗迹组合,包括: Asterosoma, Rosselia, Skolithos, Planolites, and Thalassinoides 潮间带潮汐砂坝 表 2 遗迹化石扫描图像(0433井)及发育规模统计结果
Table 2. The CT scan picture of trace fossils (Well 0433) and the statistics of spatial scale
类别 Palaeophycus Planolites Ophiomorpha Skolithos Teichichnus Rosselia CT图像 CT值 1 400~4 800 1 700~5 000 3 000~5 000 3 000~5 000 1 800~2 500 1 100~1 800 统计个数 45 68 14 34 8 8 长度/mm 58.15 45.67 53.75 24.48 47.61 31.2 孔径/mm 6.34 24.26 8.32 1.52 15.79 12.1 -
[1] 张立军, 范若颖. 遗迹学的可持续发展: 第4届国际遗迹学大会综述[J]. 古地理学报, 2016, 18(5): 717-720. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201605002.htmZhang L J, Fan R Y. Biological traces towards sustainable development: Outline of the fourth international congress on ichnology[J]. Journal of Paleogeography, 2016, 18(5): 717-720. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201605002.htm [2] Gingras M K, Maceachern J A, Dashtgard S E. The potential of trace fossils as tidal indicators in bays and estuaries[J]. Sedimentary Geology, 2012, 279: 97-106. doi: 10.1016/j.sedgeo.2011.05.007 [3] 龚一鸣, 胡斌, 卢宗盛, 等. 中国遗迹化石研究80年[J]. 古生物学报, 2009, 48(3): 322-337. doi: 10.3969/j.issn.0001-6616.2009.03.005Gong Y M, Hu B, Lu Z S, et al. Study of trace fossils in the past eighty years in China[J]. Acta Palaeontologica Sinica, 2009, 48(3): 322-337. doi: 10.3969/j.issn.0001-6616.2009.03.005 [4] 易雨昊, 李先昀, 冯庆来. 滇东北会泽蜂子箐剖面寒武系纽芬兰统生物地层学和年代地层学[J]. 地质科技情报, 2019, 38(5): 115-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905012.htmYi Y H, Li X Y, Feng Q L. Biostratigraphy and chronostratigraphy of the Cambrian terreneuvian from the Fengziqing section in Huize area, Northeast Yunnan[J]. Geological Science and Technology Information, 2019, 38(5): 115-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905012.htm [5] Pemberton S G, Gingras M K. Classification and characterizations of biogenically enhanced permeability[J]. AAPG Bulletin, 2005, 89(11): 1493-1517. doi: 10.1306/07050504121 [6] Gingras M K, Baniak G, Gordon J, et al. Porosity and permeability in bioturbated sediments, trace fossils as indicators of sedimentary environments[J]. Developments in Sedimentology, 2012, 64: 837-868. [7] Wightman D M, Pemberton S G, Singh C. Depositional modelling of the Upper Mannville Lower Cretaceous East Central Alberta: Implications for the recognition of brackish water deposits[C]//Anon. Reservoir Sedimentology. [S. l. ]: Society of Economic Mineralogists and Paleontologists, 1987. [8] Reineck H E. Natural indicators of energy level in recent sediments: The application of ichnology to a coastal engineering problem[J]. Trace fossils, 1977, 2: 265-272. http://www.researchgate.net/publication/292249634_Natural_indicators_of_energy_level_in_Recent_sediments_the_application_of_ichnology_to_a_coastal_engineering_problem [9] Taylor A, Goldring R, Gowland S. Analysis and application of ichnofabrics[J]. Earth-Science Reviews, 2003, 60(3): 227-259. http://www.sciencedirect.com/science/article/pii/S0012825202001058 [10] Hauck T E, Dashtgard S E, Pemberton S G, et al. Brackish-water ichnological trends in a microtidal barrier island-embayment system, Kouchibouguac National Park, New Brunswick, Canada[J]. Palaios, 2009, 24(8): 478-496. doi: 10.2110/palo.2008.p08-056r [11] Timmer E R, Gingras M K, Zonneveld J P. Spatial and temporal significance of process ichnology data from silty-mudstone beds of inclined heterolithic stratification, Lower Cretaceous McMurray Formation, NE Alberta, Canada[J]. Palaios, 2016, 31(11): 533-548. doi: 10.2110/palo.2015.089 [12] 查明, 尹向烟, 姜林, 等. CT扫描技术在石油勘探开发中的应用[J]. 地质科技情报, 2017, 36(4): 228-235. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704030.htmZha M, Yin X Y, Jiang L, et al. Application of CT technology in petroleum exploration and development[J]. Geological Science and Technology Information, 2017, 36(4): 228-235. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704030.htm [13] 陈浩, 黄继新, 刘尚奇, 等. 阿萨巴斯卡油砂下白垩统McMurray组沉积演化特征[J]. 地质科技情报, 2018, 37(3): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201803013.htmChen H, Huang J X, Liu S Q, et al. Sedimentary evolution of the Lower cretaceous McMurray Formation, Athabasca oil sands[J]. Geological Science and Technology Information, 2018, 37(3): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201803013.htm [14] Flach P D, Mossop G D. Depositional environments of Lower Cretaceous McMurray Formation, Athabasca Oil Sands, Alberta[J]. AAPG Bulletin, 1985, 69(8): 1195-1207. [15] Fustic M, Hubbard S M, Spencer R, et al. Recognition of down-valley translation in tidally influenced meandering fluvial deposits, Athabasca Oil Sands (Cretaceous), Alberta, Canada[J]. Marine and Petroleum Geology, 2012, 29(1): 219-232. doi: 10.1016/j.marpetgeo.2011.08.004 [16] Labrecque P A, Hubbard S M, Jensen J L, et al. Sedimentology and stratigraphic architecture of a point bar deposit, Lower Cretaceous McMurray Formation, Alberta, Canada[J]. Bulletin of Canadian Petroleum Geology, 2011, 59(2): 147-171. doi: 10.2113/gscpgbull.59.2.147 [17] 陈浩, 黄继新, 常广发, 等. 基于全岩心CT的遗迹化石识别及沉积环境分析: 以加拿大麦凯Ⅲ油砂区块为例[J]. 古地理学报, 2018, 20(4): 703-712. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201804014.htmChen H, Huang J X, Chang G F, et al. Ichnology identification and sedimentary environment analysis based on CT scanning: A case study from Mackay Ⅲ Oil Sands, Canada[J]. Journal of Paleogeography, 2018, 20(4): 703-712. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201804014.htm [18] Botterill S E, Campbell S G, Pemberton S G, et al. Process ichnological analysis of the Lower Cretaceous Bluesky Formation, Alberta[J]. Bulletin of Canadian Petroleum Geology, 2015, 63(2): 123-142. doi: 10.2113/gscpgbull.63.2.123 [19] Buatois L A, Gingras M K, Maceachern J, et al. Colonization of brackish-water systems through time: Evidence from the trace-fossil record[J]. Palaios, 2005, 20(4): 321-347. doi: 10.2110/palo.2004.p04-32