Characteristics and mechanism analysis of geothermal field in Nanle Sub-uplift, Bohai Bay Basin
-
摘要: 为探究渤海湾盆地南乐地热田的岩溶热储特征及地热田成因机制,基于物探和地质资料,对渤海湾盆地南乐次凸地热田的热储展布规律、水化学特征、运移通道以及地温场等因素进行了剖析,构建了地热田成因概念模型。研究表明:南乐次凸地热田存在加里东、印支-海西、燕山、喜山4期奥陶系风化壳岩溶热储,顶板埋深1 427~2 135 m,有效厚度累计46.2~91.7 m;具有良好的盖层,地温梯度高达3.04~3.24℃/hm,地下水类型为SO4+Cl-Na+Ca-B型;地热田形成于较高的大地热流、渤海湾陆内裂陷盆地-东濮凹陷西斜坡带背景下,受西部太行山区和东部鲁西南山区裸露基岩大气降水的共同补给,进入基岩的冷水深部循环受到热流的"热折射""热流再分配"效应以及兰聊断裂摩擦生热等的共同加热、增温,沿区域内不整合面以及断裂向上运移、富集,最终形成了以奥陶系为热储的传导型地热田系统。南乐次凸地热田奥陶系岩溶热储可采地热资源量为1.02×109 GJ,折合标煤3.50×107 t,可满足供暖面积12.37×104万m2,具有良好的开发市场前景。研究成果对南乐地热田乃至渤海湾盆地的岩溶热储开发利用具有较好的指导意义。Abstract: In order to explore the characteristics of karst reservoir and the genetic mechanism of the Nanle geothemal field in Bohai Bay Basin.Based on geophysical and geological data, this paper analyzes the factors of the geothermal field that include karstic reservoir distribution, hydro-chemical characteristics, migration channels and geothermal, and eventually we construct the conceptual model of the geothermal field. The results show that there are four stages of Ordovician weathering crust karst heat reservoirs in the Nanle geothermal field, including Caledonian, Indo-Hercynian, Yanshan and Xishan. The burial depth of the Ordovician karstic reservoir is 1 427-2 135 m (effective thickness: 46.2-91.7 m). The reservoir is characterized by good caprock and geothermal gradient (3.04-3.24℃/hm), and the groundwater is SO4+Cl-Na+Ca-B type. It is considered that the geothermal field is a conductive one, which was formed in the west slope belt of Dongpu Sag-intracontinental basin in the high heat flow. And the system is characterized by the cold water that deep into the bedrock of cycle that influenced by thermal refraction and redistribution effect of heat flow and friction heat generation of Lanliao fault, which along the regional unconformity and fracture migration, enrichment, whose recharged water source comes from atmospheric precipitation in the Taihangshan and Luxinan, and finally concentrated in Ordovician karst heat reservoir of the Nanle Sub-uplift. The total extractable geothermal resource of the Ordovician karstic reservoir in the Nanle Sub-uplift geothermal field is 1.02×109 GJ (3.5×107 t standard coal eqv.), and the annual geothermal resource can meet the indoor heating demand of 0.124 million square meter. The geothermal field has a good market potential.The results have a good guiding significance for the development and utilization of karst reservoirs in the south of Bohai Bay Basin-Nanle geothermal field.
-
Key words:
- karst reservoir /
- geothermal field /
- geothermal resources /
- crack basin /
- Nanle Sub-uplift
-
表 1 南乐次凸地热田部分地热钻孔数据
Table 1. Typical geothermal borehole data from the Nanle Sub-uplift
井号 井深/m 热储层段/m 热储层位 出口水温/ ℃ 水量/ (m3·h-1) 储层有效厚度/m 盖层地温梯度/ (℃·hm-1) 探采1井 2 700.51 985~1 375 Ng 52 70.24 155.1 2.89 回灌1井 1 427 982~1 376 Ng 50 118.57 127.7 2.74 温莎尚郡井 1 490 1 010~1 490 Ng 45 50.00 137.8 2.20 探采2井 2 281 1 766~2 281 O 68 126.04 48.2 3.24 探采3井 2 480 1 958~2 480 O 69 126.04 46.2 3.24 西环探采1井 2 400 1 873~2 400 O 75 55.00 45.8 3.08 府前街D4井 2 310 1 768~2 310 O 65 126.04 65.0 3.18 府前街D5井 2 496 1 840~2 496 O 65 126.03 91.7 3.23 文昌苑1井 2 498 1 842~2 498 O 63 110.00 54.8 3.21 文昌苑2井 2 265 2 072~2 265 O 70 120.00 26.3 3.04 注:上述数据均为本次研究的原始数据,取自实钻地热井。盖层地温梯度表示钻井上覆盖层的平均地温梯度,根据恒温层厚度24.8 m,平均地面温度16℃计算得到。Ng.新近系馆陶组;O.奥陶系 表 2 南乐次凸部分井水化学分析数据
Table 2. Chemical analysis data of wells in the Nanle Sub-uplift
序号 井名 井深/ m ρ(TDS)/ (mg·L-1) pH 阳离子ρB/(mg·L-1) 阴离子ρB/(mg·L-1) 阴阳离子平衡误差/% 水化学类型 K+ Na+ Ca+ Mg2+ Cl- SO42- HCO3- 1 探采1井 2 700.51 2 881 7.73 15.78 695.00 181.40 31.42 475.70 1 364.00 173.00 2.69 SO4+Cl-Na-B 2 回灌1井 1 427 2 082 8.23 4.07 573.02 70.91 13.48 375.59 726.46 325.90 2.26 SO4+Cl-Na-B 3 温莎尚郡井 1 490 2 523 8.09 6.73 654.20 166.10 32.92 1 105.00 778.61 268.60 3.89 SO4+Cl-Na-B 4 探采2井 2 281 3 530 6.86 50.13 367.96 512.64 88.73 539.50 1 533.30 238.43 0.73 SO4+Cl-Na+Ca-B 5 探采3井 2 480 3 300 6.76 53.70 367.52 522.05 89.70 601.88 1 563.30 233.02 2.31 SO4+Cl-Na+Ca-B 6 西环探采1井 2 400 2 890 6.50 284.40 34.30 836.00 7.00 219.00 7 府前街D4井 2 310 3 430 6.73 574.00 234.00 8 府前街D5井 2 496 3 350 7.19 638.00 248.00 9 文昌苑探采1井 2 498 3 291 7.19 611.35 1 465.40 10 文昌苑探采2井 2 265 3 295 6.68 395.77 1 466.40 11 清丰1井 3 070 6.97 45.56 341.13 405.13 77.60 578.63 1 116.90 262.87 1.33 SO4+Cl-Na+Ca-B 12 清丰2井 3 040 7.69 46.94 340.84 428.98 79.04 572.22 1 114.30 280.54 0.14 SO4+Cl-Na+Ca-B 注:上述数据均为本次研究的原始数据,取自实钻地热井。①水化学类型是按照C.A舒卡列夫分类(水中主要阴、阳离子摩尔分数大于25%的顺序排列命名)。②阴阳离子平衡相对误差:E=|Φ阳-Φ阴|/|Φ阳+Φ阴| ×100%,式中,Φ阳、Φ阴分别代表阳离子和阴离子的毫克当量浓度(meq/L),如果E≤5%则说明该井水样测试结果比较准确;如果E>5%则说明该井水样测试结果有问题。经过计算,研究区所有井的阴阳离子平衡相对误差(E)在0.14%~3.89%之间,说明测试结果较为准确 表 3 南乐次凸地下热水循环深度计算结果
Table 3. Calculation results of geothermal water circulating depth in the Nanle Sub-uplift
井号 热储平均温度/℃ 热循环最小深度/m 探采2井 61.0 2 296.14 探采3井 62.0 2 266.92 府前街D4井 58.5 2 249.75 府前街D5井 59.0 1 898.57 文昌苑探采1井 62.0 2 201.08 文昌苑探采2井 63.0 2 024.95 -
[1] Erkan K, Holdman G, Blackwell D, et al. Thermal characteristics of the Chena hot springs, Alaska geo-thermal system[C]//Anon. Proceedings of Thirty-second Workshop on Geothermal Reservoir Engineering. Stanford, CA: Stanford University, 2007: 22-24. [2] Leptokaropoulos K, Staszek M, Lasocki S, et al. Evolution of seismicity in relation to fluid injection in the northwestern part of the Geysers geothermal field[J]. Geophysical Journal, 2018, 212(2): 1157-1166. doi: 10.1093/gji/ggx481 [3] Chapman D S, Rybach L. Heat flow anomalies and their interpretations[J]. Journal of Geodynamics, 1985, 4(1): 3-37. http://adsabs.harvard.edu/abs/1985RaF....28..574S [4] Cermark V, Rybach L. Vertical distribution of heat production in the continental crust[J]. Tectonophysic, 1989, 159(3/4): 217-230. http://www.onacademic.com/detail/journal_1000035690996710_2742.html [5] Aston F. Iceland: Powered by the planet[geothermal energy][J]. Engineering & Technology, 2015, 10(5): 48-51. http://www.onacademic.com/detail/journal_1000039864557410_4cd6.html [6] Benighaus C, Bleicher A. Neither risky technology nor renewable electricity: Contested frames in the development of geothermal energy in Germany[J]. Energy Research & Social Science, 2019, 47: 46-55. http://www.onacademic.com/detail/journal_1000040847332910_0a69.html [7] Jaupart C, Labrosse S, Lucazeau F, et al. Temperatures, heat, and energy in the mantle of the Earth[J]. Earth Systems and Environmental Sciences, 2015, 7: 223-270. http://www.researchgate.net/profile/Jean_Claude_Mareschal/publication/279173248_Temperatures_Heat_and_Energy_in_the_Mantle_of_the_Earth/links/558aba9308ae02c9d1f93849.pdf [8] 王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201704002.htmWang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4): 449-459(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201704002.htm [9] 张琳, 张慧利, 于增宝, 等. 河南省内黄隆起区找煤地震技术应用研究[J]. 中州煤炭, 2016(8): 131-136. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT201608031.htmZhang L, Zhang H L, Yu Z B, et al. Application research on coal seismic technology in Neihuang uplift area in Henan Province[J]. Zhongzhou Coal, 2016(8): 131-136(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT201608031.htm [10] 张海娇. 内黄地热田地热资源评价及开采潜力分析[J]. 陕西水利, 2019(4): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SXSN201904014.htmZhang H J. Evaluation and mining potential analysis of geothermal resource in Neihuang Geothermal Field[J]. Shaanxi Water Resources, 2019(4): 36-40(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SXSN201904014.htm [11] 王钧, 黄尚瑶, 黄歌山, 等. 中国地温分布的基本特征[M]. 北京: 地震出版社, 1990.Wang D, Huang S Y, Huang G S, et al. Characteristics of the geo-temperature distribution in China[M]. Beijing: Seismological Press, 1990(in Chinese). [12] Furlong K P, Chapman D S. Heat flow, heat generation, and the thermal state of the lithosphere[J]. Annual Review of Earth and Planetary Sciences, 2013, 41(1): 385-410. doi: 10.1146/annurev.earth.031208.100051 [13] 豆靖涛, 岳洁, 吕小凡, 等. 南乐县睢庄水源地水文地质特征及开采条件分析[J]. 地球科技, 2015, 6(5): 26-28.Dou J T, Yue J, Lv X F, et al. Hydrogeological characteristics and mining conditions analysis of Suizhuang water source in Nanle County[J]. Earth Science and Technology, 2015, 6(5): 26-28(in Chinese with English abstract). [14] 季汉成, 房超, 华南, 等. 鲁西豫东地区奥陶系顶部岩溶储集层特征及有利控制因素[J]. 古地理学报, 2016, 18(4): 545-559. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201604006.htmJi H C, Fang C, Hua N, et al. Characteristics and favorable controlling factors of karst reservoirs within the uppermost part of Ordovician in western Shandong-eastern Henan area[J]. Journal of Palaeo-Geography, 2016, 18(4): 545-559(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201604006.htm [15] 岳勇, 罗少辉. 塔里木盆地玉北地区构造特征及对奥陶系成藏输导体系的控制[J]. 地质科技通报, 2019, 38(5): 20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905002.htmYue Y, Luo S H. Structural characteristics and their control over ordovician hydrocarbon migration pathway systemin Yubei area, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2019, 38(5): 20-30(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905002.htm [16] 肖菁. 东濮地区奥陶系碳酸盐岩岩溶储层主控因素研究[D]. 北京: 中国石油大学(北京), 2017.Xiao J. Main controlling factors study of carbonate karst reservoir of the Ordovician in Dongpu area[D]. Beijing: China University of Petroleum(Beijing), 2017(in Chinese with English abstract). [17] Giggenbach W F. Geothermal solute equilibria: Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 42(1): 142-154. http://www.onacademic.com/detail/journal_1000035564357710_f2b5.html [18] 郭静, 毛绪美, 童晟, 等. 水化学温度计估算粤西沿海深部地热系统热交换温度[J]. 地球科学: 中国地质大学学报, 2016, 41(12): 2075-2087. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201612011.htmGuo J, Mao X M, Tong S, et al. Using hydro-chemical geo-thermometers calculate exchange temperature of deep geothermal system in west coastal area of Guangdong Province[J]. Earth Science: Journal of China University of Geosciences, 2016, 41(12): 2075-2087(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201612011.htm [19] 王彩会, 左丽琼, 荆慧, 等. 江苏东海温泉热储温度估算[J]. 地质学刊, 2015, 39(1): 111-115. doi: 10.3969/j.issn.1674-3636.2015.01.111Wang C H, Zuo L Q, Jing H, et al. Estimation of geothermal reservoir temperature for the Donghai hot spring in Jiangsu[J]. Journal of Geology, 2015, 39(1): 111-115(in Chinese with English abstract). doi: 10.3969/j.issn.1674-3636.2015.01.111 [20] 吴红梅, 周立岱, 郭宇. 阳离子温标在中低温地热中的应用研究[J]. 黑龙江科技学院学报, 2006, 16(1): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJI200601007.htmWu H M, Zhou L D, Guo Y. Application of cation temperature scale in medium-low temperature geothermal resource[J]. Journal of Heilongjiang Institute of Science & Technology, 2006, 16(1): 31-34(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HLJI200601007.htm [21] 李洁祥, 郭清海, 余正艳. 高温地热系统中黏土矿物形成对Na-K和K-Mg地球化学温标准确性的影响[J]. 地球科学, 2017, 42(1): 142-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201701012.htmLi J X, Guo Q H, Yu Z Y. Impact of clay mineral formation in high-temperature geothermal system on accuracy of Na-K and K-Mg geo-thermometers[J]. Earth Science, 2017, 42(1): 142-154(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201701012.htm [22] 李学伦, 孙效功. 山东半岛温泉的分布规律与成因[J]. 青岛海洋大学学报: 自然科学版, 1997, 27(3): 389-396. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY703.017.htmLi X L, Sun X G. Distribution and origin of warm springs in Shandong Peninsula[J]. Journal of Ocean University of Qingdao: Natural Science Edition, 1997, 27(3): 389-396(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY703.017.htm [23] 朱喜, 王贵玲, 马峰, 等. 太行山-雄安新区蓟县系含水层水文地球化学特征及意义[EB/OL]. (2020-07-21)[2020-12-01]. https://kns.cnki.net/kcms/detail/42.1874.P.20200721.0914.006.html.Zhu X, Wang G L, Ma F, et al. Hydro-geo chemistry of geothermal waters from Taihang Mountain-Xiong'an New Area and its indicating significance[EB/OL]. (2020-07-21)[2020-12-01]. https://kns.cnki.net/kcms/detail/42.1874.P.20200721.0914.006.html(in Chinese with English abstract). [24] 姜光政, 高堋, 饶松, 等. 中国大陆地区大地热流数据汇编: 第4版[J]. 地球物理学报, 2016, 59(8): 2892-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htmJiang G Z, Gao P, Rao S, et al. Compilation of heat flow data in the continental area of China: 4th edition[J]. Chinese Journal of Geophysics, 2016, 59(8): 2892-2910(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htm [25] 左银辉, 邱楠生, 邓已寻, 等. 查干凹陷大地热流[J]. 地球物理学报, 2013, 56(9): 3038-3050. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201309017.htmZuo Y H, Qiu N S, Deng Y X, et al. Terrestrial heat flow in the Qagan Sag, Inner Mongolia[J]. Chinese Journal of Geophysics, 2013, 56(9): 3038-3050(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201309017.htm [26] 李宗星, 高俊, 郑策, 等. 柴达木盆地现今大地热流与晚古生代以来构造-热演化[J]. 地球物理学报, 2015, 58(10): 3687-3705. doi: 10.6038/cjg20151021Li Z X, Gao J, Zheng C, et al. Present-day heat flow and tectonic-thermal evolution since the Late Paleozoic time of the Qaidam Basin[J]. Chinese Journal of Geophysics, 2015, 58(10): 3687-3705(in Chinese with English abstract). doi: 10.6038/cjg20151021 [27] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. doi: 10.3981/j.issn.1000-7857.2012.32.002Wang J Y, Hu S B, Pang Z H, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32): 25-31(in Chinese with English abstract). doi: 10.3981/j.issn.1000-7857.2012.32.002 [28] 雷晓东, 胡圣标, 李娟, 等. 北京平原区西北部大地热流与深部地温分布特征[J]. 地球物理学报, 2018, 61(9): 3735-3748. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201809021.htmLei X D, Hu S B, Li J, et al. Characteristics of heat flow and geothermal distribution in the northwest Beijing Plain[J]. Chinese Journal of Geophysics, 2018, 61(9): 3735-3748(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201809021.htm [29] 龚育龄. 中国东部渤海湾盆地热结构和热演化[D]. 南京: 南京大学, 2003.Gong Y L. Thermal structure and evolution of the Bohai Bay Basin, eastern China[D]. Nanjing: Nanjing University, 2003(in Chinese with English abstract). [30] 臧绍先, 刘永刚, 宁杰远. 华北地区岩石圈热结构的研究[J]. 地球物理学报, 2002, 45(1): 56-66. doi: 10.3321/j.issn:0001-5733.2002.01.008Zang S X, Liu Y G, Ning J Y. Thermal structure of the lithosphere in North China[J]. Chinese Journal of Geophysics, 2002, 45(1): 56-66(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.2002.01.008 [31] 詹亚辉, 王现国, 钱建立, 等. 豫北内黄凸起地热田成因机制分析[J]. 人民黄河, 2018, 40(9): 78-81, 92. doi: 10.3969/j.issn.1000-1379.2018.09.018Zhan Y H, Wang X G, Qian J L, et al. Causal mechanism analysising of geothermal field in Neihuang Uplift of Yubei[J]. Yellow River, 2018, 40(9): 78-81, 92(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1379.2018.09.018 [32] 刘丽, 任战利, 崔营滨, 等. 东濮凹陷现今地温场分布特征[J]. 地质科学, 2007, 42(4): 787-794. doi: 10.3321/j.issn:0563-5020.2007.04.013Liu L, Ren Z L, Cui Y B, et al. Distribution of present-day geothermal field in the Dongpu Sag[J]. Chinese Journal of Geology, 2007, 42(4): 787-794(in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.2007.04.013 [33] 胡圣标, 何丽娟, 汪集旸. 中国大陆地区大地热流数据汇编: 第3版[J]. 地球物理学报, 2001, 44(5): 611-626. doi: 10.3321/j.issn:0001-5733.2001.05.005Hu S B, He L J, Wang J Y. Compilation of heat flow data in the China continental area: 3th edition[J]. Chinese Journal of Geophysics, 2001, 44(5): 611-626(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.2001.05.005 [34] 陈墨香, 邓孝. 华北平原新生界盖层地温梯度图及其简要说明[J]. 地质科学, 1990, 25(3): 269-277. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199003006.htmChen M X, Deng X. The map of geothermal gradient of Cenozoic sedimentary cover in the North China Plain and its brief explanation[J]. Scientia Geologica Sinica, 1990, 25(3): 269-277(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199003006.htm [35] 毛小平. 地热田高地温异常成因机理及温度分布特征[J]. 地球学报, 2018, 39(2): 216-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201802009.htmMao X P. Genetic mechanism and distribution characteristics of high temperature anomaly in geothermal field[J]. Acta Geoscientica Sinica, 2018, 39(2): 216-224(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201802009.htm [36] 熊亮平, 张菊明. 热流的折射和再分配的数学模拟[J]. 地质科学, 1984, 19(4): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198404011.htmXiong L P, Zhang J M. Mathematical simulation of refract and redistribution of heat flow[J]. Scientia Geologica Sinica, 1984, 19(4): 102-111(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198404011.htm [37] 熊亮萍, 高维安. 隆起与坳陷地区地温场的特点[J]. 地球物理学报, 1982, 25(5): 60-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX198205008.htmXiong L P, Gao W A. Characteristics of geothermal in uplift and depression[J]. Chinese Journal of Geophysics, 1982, 25(5): 60-68(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX198205008.htm [38] 龚育龄, 王良书, 刘绍文, 等. 济阳坳陷大地热流分布特征[J]. 地球科学: 中国地质大学学报, 2003, 33(4): 384-391. doi: 10.3321/j.issn:1000-2383.2003.04.018Gong Y L, Wang L S, Liu S W, et al. Distribution characteristics of terrestrial heat flow in Jiyang Depression[J]. Earth Science: Journal of China University of Geosciences, 2003, 33(4): 384-391(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2003.04.018 [39] 王朱亭, 张超, 姜光政, 等. 雄安新区现今地温场特征及成因机制[J]. 地球物理学报, 2019, 62(11): 4313-4322. doi: 10.6038/cjg2019M0326Wang Z T, Zhang C, Jiang G Z, et al. Present-day geothermal field of Xiong'an New Area and its heat source mechanism[J]. Chinese Journal of Geophysics, 2019, 62(11): 4313-4322(in Chinese with English abstract). doi: 10.6038/cjg2019M0326 [40] Jacek M, Judith C, James C, et al. The first deep heat flow determination in crystalline basement rocks beneath the western Canadian Sedimentary Basin[J]. Geophysical Journal International, 2014, 197(2): 731-747. doi: 10.1093/gji/ggu065 [41] 邓晋福, 魏文博, 邱瑞照. 中国华北地区岩石圈三维结构及演化[M]. 北京: 地质出版社, 2007.Deng J F, Wei W B, Qiu R Z. The three-dimensional structure of lithosphere and its evolution in North China[M]. Beijing: Geological Publishing House, 2007(in Chinese). [42] 蒋万军, 谢倩, 王广才, 等. 林州-安阳地区地下水三氮分布特征及其影响因素[J]. 地球与环境, 2016, 44(4): 422-430. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201604005.htmJiang W J, Xie Q, Wang G C, et al. Nitrogen distribution in ground water of Linzhou-Anyang area and its affecting factors[J]. Earth and Environment, 2016, 44(4): 422-430(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201604005.htm [43] 武亚遵, 万军伟, 潘国营, 等. 新乡市地下水化学特征及演化规律[J]. 人民黄河, 2011, 33(1): 70-72. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201101029.htmWu Y Z, Wan J W, Pan G Y, et al. The chemical characteristics and evolution of groundwater in Xinxiang City[J]. Yellow River, 2011, 33(1): 70-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201101029.htm [44] 周红智, 魏俊浩, 石文杰, 等. 东昆仑鄂拉山岩浆带晚三叠世后碰撞伸展: 来自索拉沟高分异I型花岗岩的证据[J]. 地质科技通报, 2020, 39(4): 150-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202004020.htmZhou H Z, Wei J H, Shi W J, et al. Late triassic post-collision extension at elashan magmatic belt, East Kunlun Orogenic Belt: Insights from Suolagou highly fractionated I-type granite[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 150-164(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202004020.htm [45] 朱喜, 张庆莲, 刘彦广. 基于热储法的鲁西平原地热资源评价[J]. 地质科技通报, 2016, 35(4): 172-177. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604027.htmZhu X, Zhang Q L, Liu Y G. Evaluation of the geothermal resources in the plain of west shandong province[J]. Bulletin of Geological Science and Technology, 2016, 35(4): 172-177(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604027.htm [46] 闫佰忠, 孙剑, 江海洋, 等. 山东省东营市东营区地热资源特征及储量评价[J]. 河北地质大学学报, 2019, 42(5): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX201905004.htmYan B Z, Sun J, Jiang H Y, et al. Study of characteristics and reserves of geothermal resources in Dongying District, Shandong[J]. Journal of Hebei Geo-University, 2019, 42(5): 22-27(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX201905004.htm [47] 韩征, 崔一娇, 王树芳, 等. 基于蒙特卡罗法的地热资源评价: 以河北省雄县地热田为例[J]. 城市地质, 2015, 10(4): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDZ201504013.htmHan Z, Cui Y J, Wang S F, et al. Geothermal resource assessment based on Monte-Carlo method: A case study of geothermal field in Xiong County of Hebei Province[J]. Urban Geology, 2015, 10(4): 58-62(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CSDZ201504013.htm [48] 杜学斌, 陆永潮, 曹强, 等. 东海盆地西湖凹陷深部储层"相-岩-温"三元分级评价原则与效果[J]. 地质科技通报, 2020, 39(3): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202003005.htmDu X B, Lu Y C, Cao Q, et al. Grading evaluation of deep reservoir in Xihu Depression, East China Sea Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 10-19(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202003005.htm