Geochemical characteristics and its paleo-environmental significance of the Lower Cambrian carbonate in the northwestern Tarim Basin: A case study of Well Shutan-1
-
摘要: 近年来,塔里木盆地盐下已成为深层油气勘探最重要的领域之一。下寒武统肖尔布拉克组是最主要的勘探层位,目前该层段地球化学特征和古环境的分析主要集中在柯坪露头区,而盆内缺乏相关研究。以盆内巴楚隆起舒探1井为例,对下寒武统肖尔布拉克组岩石学和地球化学特征(主、微量元素,稀土元素及碳氧同位素)进行了高精度分析,重建了其沉积时期的古环境及其变化特征。研究表明:舒探1井肖尔布拉克组发育多种类型的白云岩。下部以厚层藻云岩为主,中部为薄层泥岩夹白云质灰岩,上部以细-粉晶白云岩为主。样品Lan/Ybn均值为1.09,下部和上部呈现出Eu的正异常,薄片中可见硅质胶结、硅质碎屑和溶蚀现象,表明研究区可能受到了热液作用的影响。该组中部沉积物粒度较细并富集氧化还原敏感元素,V/Cr和Ni/Co分别介于2~4.25和5~7之间,表明沉积水体为次氧化环境,而上部和下部沉积物粒度较粗,氧化-还原敏感元素含量及其比值均较低,表明沉积水体为氧化环境。肖尔布拉克组δ13C值在-1.3‰~2.7‰之间,由下自上先降低后升高,下部和中部存在2个显著的正异常及1个负异常。古环境恢复表明肖尔布拉克期古盐度先降低后升高,古温度显示出逐渐上升的特点;肖尔布拉克组顶部古盐度较高,藻云岩发育,伴随着后期的淋滤和改造作用,是优质白云岩储层发育的有利部位。研究成果可以为该区的油气勘探提供依据。Abstract: Recently, subsalt exploration in the Tarim Basin has been one of the most significant targets of the deep hydrocarbon exploration.The Lower Cambrian Xiaoerbulake Formation is the major reservoir in current exploration.However, the analysis of the detailed geochemical and paleoenvironmental characteristics are limited in Keping area in absence of studies in the interior of the basin.This paper focuses on the Well Shutan-1 in the Bachu Uplift of the northwestern Tarim Basin.Based on the analysis of petrology and the geochemical characteristics (major, trace, rare elements and carbon-oxygen isotope), depositional environment of the Lower Cambrian Xiaoerbulake Formation is explored.Our study indicates that the lower, middle and upper part of the Xiaoerbulake Formation in Well Shutan-1 comprise thick algal dolomite, mudstone interbedded with dolomitic limestone and fine to silty dolomite, respectively.The average value of Lan/Ybn is 1.09 in the Xiaoerbulake Formation, of which the lower and upper part show positive Eu anomaly.Silica cementation, silica fragment and dissolution can be seen in the thin section, indicative of hydrothermal influence.Redox-sensitive trace elements are enriched in the middle of the formation.V/Cr and Ni/Co range from 2 to 4.25 and 5 to 7.The grain size of the sediment is finer.These are indications of suboxic bottom-water condition.The RSTEs and their ratios are relatively low in the upper and lower Xiaoerbulake Formation.The grain size of sediment is coarser.These are indications of oxic bottom-water condition.The carbon isotope ranges from -1.3‰ to 2.7‰. It decreases firstly and then increase throughout the interval.Two positive and one negative isotope excursion are identified in the lower and middle part of the interval, respectively.Paleoenvironmental reconstructions indicate that paleo-salinity firstly increased and then decreased.Paleo-seawater temperature gradually increased.Dolomite reservoirs were well developed in the late stage due to moderate salinity, occurrence of algal dolomite along with later weathering and dissolution.The research results can provide a basis for oil and gas exploration in this area.
-
Key words:
- Early Cambrian /
- Xiaoerbulake Formation /
- geochemistry /
- carbon isotope /
- paleoenvironment
-
图 2 舒探1井肖尔布拉克组取心段镜下岩石学特征
a.玄武岩,埋深2 064 m,正交偏光;b.含陆源碎屑泥岩,埋深2 062.6 m,正交偏光;c.中晶白云岩,埋深1 995.5 m,单偏光;d.砂屑纹层状白云岩,埋深1 994.3 m,正交偏光;e.硅质细晶白云岩,埋深1 917.8 m,正交偏光;f.硅质白云岩,埋深1 918.2 m,正交偏光;g.叠层石白云岩,埋深1 889.1 m,正交偏光;h.砂屑粉晶白云岩,埋深1 887 m,单偏光;i.含硅质砂屑泥-粉晶白云岩,埋深1 883.2 m,正交偏光
Figure 2. Microscopic characteristics of the Xiaoerbulake Formation from Well Shutan-1
图 4 舒探1井肖尔布拉克组PAAS标准化后稀土元素配分模式图(岩性图例同图 1)
Figure 4. PAAS-normalized REE patterns of the Xiaoerbulake Formation from Well Shutan-1
图 7 过舒探1井的地震剖面(剖面位置见图 1)
Figure 7. Seismic profile across Well Shutan-1
表 1 舒探1井肖尔布拉克组样品主、微量和稀土元素测试结果
Table 1. Analytical results of major, trace and rare earth elements of samples in the Xiaoerbulake Formation from Well Shutan-1
样品深度/m 主量元素wB/% 微量元素wB/10-6 V/Cr Ni/Co SiO2 Al2O3 CaO K2O Na2O TFe2O3 MgO MnO P2O5 TiO2 烧失量 U V Mo Ni Cr Co Mn Sr Ba Th 1 883.2 1.69 0.27 29.8 0.09 0.04 0.42 21.10 0.01 < 0.01 0.01 45.82 0.45 3 0.22 1.1 5 0.8 106 48.1 29.7 0.50 0.6 1.4 1 883.7 1.01 0.19 30.4 0.06 0.05 0.10 21.50 0.01 < 0.01 0.01 45.67 0.33 2 0.11 0.5 2 0.6 85 39.0 22.6 0.35 1.0 0.8 1 884.0 1.22 0.16 29.8 0.06 0.03 0.07 21.10 0.01 < 0.01 < 0.01 45.72 0.35 2 0.09 0.6 3 0.7 101 36.2 11.5 0.27 0.7 0.9 1 884.3 1.63 0.14 29.0 0.05 0.05 0.08 20.50 0.01 < 0.01 < 0.01 46.09 0.31 1 0.15 0.3 13 0.6 100 453.0 147.0 0.20 0.1 0.5 1 884.8 1.22 0.17 30.1 0.05 0.03 0.27 21.00 0.01 < 0.01 0.01 45.53 0.34 2 0.11 0.4 4 0.7 130 78.9 33.6 0.31 0.5 0.6 1 885.1 1.35 0.20 30.1 0.07 0.03 0.08 20.80 0.01 < 0.01 0.01 45.62 0.30 3 0.06 0.4 5 0.7 100 89.9 15.7 0.30 0.6 0.6 1 886.5 2.43 0.39 29.4 0.12 0.03 0.57 20.60 0.02 < 0.01 < 0.01 45.05 0.55 3 0.25 1.2 6 1.0 133 46.9 44.5 0.62 0.5 1.2 1 887.0 2.87 0.45 29.6 0.13 0.03 0.94 20.30 0.02 < 0.01 0.01 45.43 0.55 5 0.19 1.1 7 1.0 159 48.7 41.2 0.68 0.7 1.1 1 888.8 3.22 0.36 29.4 0.09 0.04 0.83 20.80 0.02 < 0.01 0.01 45.29 0.60 3 0.36 1.6 7 0.8 157 45.5 9.2 0.54 0.4 2.0 1 894.0 12.67 0.20 26.2 0.06 0.46 0.06 18.55 0.02 < 0.01 0.01 41.00 0.23 3 0.24 0.9 3 0.9 135 244.0 1 500.0 0.20 1.0 1.0 1 904.0 4.39 0.10 28.9 0.04 0.29 0.04 20.50 0.02 < 0.01 0.01 44.90 0.28 3 0.22 0.9 2 0.9 132 95.0 1 470.0 0.13 1.5 1.0 1 909.0 1.30 0.11 29.6 0.03 0.20 0.21 21.10 0.01 < 0.01 0.02 46.38 0.23 2 0.26 0.8 11 0.9 124 89.4 970.0 0.25 0.2 0.9 1 914.0 2.46 0.14 29.4 0.05 0.21 0.25 20.80 0.01 < 0.01 0.02 45.81 0.28 3 0.33 0.8 2 0.9 117 128.0 850.0 0.19 1.5 0.9 1 915.3 1.40 0.02 30.4 0.01 < 0.01 0.03 21.90 0.01 < 0.01 < 0.01 46.06 0.22 1 0.50 0.2 1 0.4 109 30.7 248.0 0.11 1.0 0.5 1 915.9 19.34 0.06 24.5 0.01 0.05 0.02 17.55 < 0.01 < 0.01 < 0.01 37.76 0.17 1 0.50 0.2 2 0.3 83 23.6 21.9 0.14 0.5 0.7 1 916.4 39.30 0.10 18.45 < 0.01 < 0.01 0.03 13.25 < 0.01 < 0.01 < 0.01 30.27 0.12 1 0.50 0.2 1 0.3 64 20.5 4.7 0.08 1.0 0.7 1 917.8 20.49 0.09 23.8 0.01 < 0.01 1.39 17.00 0.02 < 0.01 < 0.01 35.12 0.28 1 0.52 1.5 10 0.5 173 25.1 43.9 0.20 0.1 3.0 1 918.3 4.68 0.18 28.7 0.02 < 0.01 0.63 20.70 0.01 < 0.01 < 0.01 42.79 0.27 1 0.12 0.2 4 0.6 125 29.1 45.1 0.18 0.3 0.3 1 919.5 16.84 0.04 25.3 0.01 < 0.01 1.00 18.00 0.02 < 0.01 < 0.01 39.33 0.24 1 0.42 1.3 11 0.5 145 25.8 26.0 0.16 0.1 2.6 1 920.0 10.59 0.38 26.8 0.12 0.28 0.12 18.55 0.02 0.01 0.04 40.65 0.38 6 2.30 3.1 13 1.6 162 234.0 1 290.0 0.36 0.5 1.9 1 926.0 3.69 0.14 28.9 0.05 0.24 0.24 20.40 0.01 < 0.01 0.02 44.96 0.29 3 0.23 1.3 3 1.0 114 108.5 1 270.0 0.12 1.0 1.3 1 932.0 0.90 0.13 30.0 0.06 0.34 0.18 21.30 0.01 < 0.01 0.02 46.77 0.48 2 0.24 0.7 2 0.8 114 191.5 980.0 0.17 1.0 0.9 1 939.0 3.53 0.74 29.8 0.24 0.12 0.68 19.20 0.02 0.03 0.08 42.58 1.85 9 0.30 4.4 5 2.1 160 346.0 640.0 0.71 1.8 2.1 1 944.0 2.06 0.34 30.4 0.10 0.14 0.44 20.30 0.02 0.02 0.04 43.62 0.59 4 1.38 1.8 4 1.2 121 236.0 670.0 0.33 1.0 1.5 1 949.0 3.27 0.72 30.4 0.22 0.25 0.52 17.90 0.02 0.08 0.07 39.98 4.41 13 0.86 4.9 7 2.4 132 395.0 130.0 1.05 1.9 2.0 1 954.0 1.36 0.25 32.4 0.08 0.25 0.08 17.12 0.02 0.01 0.04 37.09 0.78 5 0.40 4.1 6 1.3 136 561.0 50.0 0.23 0.8 3.2 1 961.0 5.47 1.43 27.6 0.29 0.31 1.75 20.00 0.03 0.05 0.27 41.43 1.47 22 0.51 24.0 10 7.4 251 191.0 510.0 0.48 2.2 3.2 1 967.0 9.63 2.38 25.7 0.52 0.64 3.29 17.90 0.05 0.11 0.51 37.14 2.04 35 0.61 31.4 17 10.1 364 321.0 630.0 0.81 2.1 3.1 1 988.0 7.34 0.64 27.9 0.30 0.05 1.34 19.45 0.03 0.09 0.03 43.70 0.79 11 0.17 2.9 5 1.6 200 49.9 9.8 0.72 2.2 1.8 1 988.3 2.11 0.51 29.4 0.24 0.14 0.30 20.70 0.02 0.11 0.02 43.37 0.70 5 0.07 1.2 3 1.2 187 57.8 9.4 0.61 1.7 1.0 1 990.5 2.91 0.57 29.8 0.3 0.07 0.49 20.40 0.05 0.28 0.04 43.79 2.15 23 0.18 1.0 6 0.8 362 77.3 16.8 0.67 3.8 1.3 1 992.0 6.45 2.08 27.2 1.37 0.08 1.39 18.85 0.03 0.05 0.12 41.45 0.94 29 0.34 4.2 17 0.9 212 106.5 78.1 2.28 1.7 4.7 1 995.5 51.91 18.37 3.23 11.85 0.10 1.42 3.08 < 0.01 0.25 0.01 45.65 0.91 92 0.09 15.7 59 2.6 25 186.5 224.0 19.60 1.6 6.0 1 998.0 8.64 3.39 25.6 1.33 0.19 1.33 16.35 0.04 0.11 0.88 6.72 1.55 42 2.91 15.5 47 5.0 252 406.0 60.0 5.02 0.9 3.1 2 004.0 3.49 1.00 31.8 0.54 0.30 0.61 14.70 0.02 0.11 0.05 34.01 0.29 9 0.35 2.5 9 1.1 139 729.0 10.0 1.25 1.0 2.3 2 013.0 0.86 0.16 30.3 0.09 0.30 0.24 20.70 0.01 0.01 0.01 45.97 0.20 2 0.28 1.1 16 0.7 125 136.0 1 210.0 0.29 0.1 1.6 2 019.0 0.49 0.10 30.1 0.08 0.42 0.17 21.10 0.01 0.01 0.01 46.98 0.39 2 0.17 1.0 4 0.7 128 124.5 4 250.0 0.13 0.5 1.4 2 025.0 0.60 0.10 30.5 0.05 0.21 0.19 20.70 0.02 0.01 0.01 46.43 0.48 3 0.26 0.8 3 0.9 161 148.0 2 050.0 0.14 1.0 0.9 2 035.0 0.92 0.16 31.1 0.08 0.24 0.39 21.40 0.02 0.01 0.01 45.71 0.40 3 0.92 1.4 5 0.9 127 210.0 860.0 0.17 0.6 1.6 2 041.0 0.84 0.26 30.3 0.09 0.24 0.35 20.30 0.02 0.02 0.02 44.92 1.18 7 0.33 1.9 4 1.1 168 197.5 750.0 0.30 1.8 1.7 2 047.0 0.42 0.09 30.1 0.05 0.28 0.24 21.30 0.03 0.01 0.01 46.90 0.80 3 0.43 1.5 4 0.8 226 2 410.0 1 390.0 0.14 0.8 1.9 2 049.0 0.58 0.20 30.1 0.09 0.30 0.26 20.90 0.02 0.02 0.01 46.53 1.17 5 0.17 1.6 4 0.9 194 431.0 1 220.0 0.29 1.3 1.8 2 052.0 0.90 0.34 30.0 0.13 0.27 0.36 20.60 0.02 0.03 0.02 45.98 0.80 6 0.14 2.0 5 1.0 156 149.0 1 150.0 0.49 1.2 2.0 2 054.0 0.74 0.23 30.3 0.11 0.29 0.32 20.70 0.02 0.02 0.01 46.18 0.58 5 0.13 1.9 5 0.9 193 123.5 1 370.0 0.35 1.0 2.1 2 057.0 1.96 0.60 30.1 0.22 0.29 0.61 19.65 0.04 0.13 0.01 44.20 1.17 8 0.35 2.4 9 1.4 308 194.5 760.0 0.77 0.9 1.7 2 057.9 14.88 5.41 22.4 2.76 0.06 1.48 16.10 0.06 0.07 0.23 36.48 1.99 10 0.08 3.2 31 2.6 490 63.3 129.5 6.64 0.3 1.2 2 059.1 50.07 17.52 2.03 8.44 0.15 7.94 3.53 < 0.01 0.15 1.11 6.58 1.76 9 0.28 1.9 170 6.2 95 87.9 778.0 22.70 0.1 0.3 2 060.0 22.47 8.02 17.95 3.89 0.21 3.68 13.35 0.05 0.11 0.43 28.86 1.17 11 0.47 2.8 48 4.1 345 135.0 650.0 10.20 0.2 0.7 表 2 舒探1井肖尔布拉克组样品碳、氧同位素测试结果
Table 2. Analyical results of carbon and oxygen of the Xiaoerbulake Formation in Well Shutan-1
编号 样品深度/m δ13C/‰ δ18O/‰ Mn/Sr Z 温度/℃ 1 1 883.2 0.8 -6.1 2.2 125.9 26.3 2 1 883.7 0.8 -6.1 2.2 125.9 26.3 3 1 884.0 0.7 -6.6 2.8 125.4 28.7 4 1 884.3 0.8 -6.5 0.2 125.7 28.2 5 1 884.8 0.6 -6.7 1.6 125.2 29.1 6 1 885.1 0.6 -7.0 1.1 125.0 30.6 7 1 886.5 0.9 -6.0 2.8 126.1 25.9 8 1 887.0 0.8 -6.4 3.3 125.7 27.7 9 1 888.8 0.8 -7.6 3.5 125.2 33.5 10 1 891.0 0.9 -6.1 126.1 26.3 11 1 894.0 0.9 -6.0 0.6 126.1 25.9 12 1 901.0 0.9 -5.9 126.2 25.4 13 1 904.0 0.9 -5.9 1.4 126.2 25.4 14 1 907.0 0.8 -6.1 125.9 26.3 15 1 909.0 0.8 -6.0 1.4 125.9 25.9 16 1 911.0 0.9 -5.9 126.2 25.4 17 1 914.0 0.8 -6.0 0.9 125.9 25.9 18 1 915.3 0.5 -6.8 3.6 124.9 29.6 19 1 915.9 0.5 -6.9 3.5 124.9 30.1 20 1 916.4 0.3 -7.3 3.1 124.3 32.0 21 1 917.0 0.7 -6.1 125.7 26.3 22 1 917.8 0.6 -6.6 6.9 125.2 28.7 23 1 918.3 0.5 -6.7 4.3 125.0 29.1 24 1 919.5 0.5 -6.7 5.6 125.0 29.1 25 1 920.0 0.6 -6.1 0.7 125.5 26.3 26 1 923.0 0.5 -6.3 125.2 27.3 27 1 926.0 0.5 -6.1 1.1 125.3 26.3 28 1 928.0 0.5 -6.3 125.2 27.3 29 1 932.0 0.3 -6.4 0.6 124.7 27.7 30 1 936.0 -0.2 -5.1 124.3 21.6 31 1 939.0 -0.2 -3.6 0.5 125.1 15.0 32 1 941.0 -0.3 -3.2 125.1 13.7 33 1 944.0 -0.4 -3.7 0.5 124.7 15.5 34 1 947.0 -0.6 -3.7 124.2 15.6 35 1 949.0 -1.1 -3.6 0.3 123.2 15.3 36 1 951.0 -1.0 -3.5 123.5 14.9 37 1 954.0 -0.7 -5.0 0.2 123.4 21.1 38 1 957.0 -1.2 -4.0 122.9 16.7 39 1 961.0 -1.0 -5.2 1.3 122.7 22.1 40 1 964.0 -1.3 -5.0 122.2 21.1 41 1 967.0 -1.1 -4.8 1.1 122.7 20.3 42 1 988.0 2.0 -6.6 4.0 128.1 28.7 43 1 988.3 2.2 -6.0 3.2 128.8 25.9 44 1 990.5 1.3 -6.1 4.7 126.9 26.3 45 1 992.0 1.6 -5.9 2.0 127.6 25.4 46 1 995.5 1.9 -6.0 0.1 128.2 25.9 47 1 996.0 1.1 -3.6 127.8 15.2 48 1 998.0 0.7 -4.4 0.6 126.6 18.4 49 2 001.0 2.1 -5.7 128.7 24.5 50 2 004.0 2.1 -6.0 0.2 128.6 25.9 51 2 010.0 2.3 -5.4 129.3 23.2 52 2 013.0 2.3 -4.3 0.9 129.9 18.0 53 2 016.0 2.2 -5.1 129.3 21.4 54 2 019.0 2.5 -2.9 1.0 131.0 12.5 55 2 022.0 2.7 -3.0 131.3 12.8 56 2 025.0 2.1 -1.9 1.1 130.7 8.4 57 2 032.0 2.3 -1.4 131.3 6.7 58 2 035.0 1.9 -2.6 0.6 129.9 11.3 59 2 038.0 1.1 -2.6 128.2 11.3 60 2 041.0 0.7 -2.1 0.9 127.7 9.1 61 2 044.0 1.1 -2.3 128.4 10.2 62 2 047.0 1.5 -2.2 0.1 129.3 9.9 63 2 049.0 1.4 -1.8 0.5 129.3 8.1 64 2 052.0 1.7 -1.3 1.0 130.1 6.4 65 2 054.0 2.0 -2.1 1.6 130.4 9.1 66 2 057.0 2.2 -2.7 1.6 130.4 11.7 67 2 057.9 2.0 -3.0 7.7 129.9 12.8 68 2 059.1 1.6 -6.3 1.1 127.4 27.3 69 2 060.0 2.4 -2.7 2.6 130.9 11.7 -
[1] Bowring S A, Grotzinger J P, Isachsen C E, et al. Calibrating rates of Early Cambrian evolution[J]. Science, 1993, 261: 1293-1298. doi: 10.1126/science.11539488 [2] Corsetti F A, Hagadorn J W. Precambrian-Cambrian transition: Death Valley, United States[J]. Geology, 2000, 28(4): 299-302. doi: 10.1130/0091-7613(2000)28<299:PTDVUS>2.0.CO;2 [3] Álvaro J J. Late Ediacaran syn-rift/post-rift transition and related fault-driven hydrothermal systems in the Anti-Atlas Mountains, Morocco[J]. Basin Research, 2013, 25(3): 348-360. doi: 10.1111/bre.12003 [4] Kirschvink J L, Magaritz M, Ripperdan R L, et al. The Precambrian-Cambrian boundary: Magnetostratigraphy and carbon isotopes resolve correlation problems between Siberia, Morocco, and South China[J]. GSA Today, 1991, 1(4): 69-91. http://www.researchgate.net/publication/285036424_The_Precambrian-Cambrian_boundary_Magnetostratigraphy_and_Carbon_Isotopes_resolve_correlation_problems_between_Siberia_Morocco_and_South_China [5] Landing E. Precambrian-Cambrian boundary global stratotype ratified and a new perspective of Cambrian time[J]. Geology, 1994, 22(2): 179-182. doi: 10.1130/0091-7613(1994)022<0179:PCBGSR>2.3.CO;2 [6] Li D, Ling H F, Jiang S Y, et al. New carbon isotope stratigraphy of the Ediacaran-Cambrian boundary interval from SW China: Implications for global correlation[J]. Geological Magazine, 2009, 146(4): 465-484. doi: 10.1017/S0016756809006268 [7] 陈永权, 严威, 韩长伟, 等. 塔里木盆地寒武纪/前寒武纪构造-沉积转换及其勘探意义[J]. 天然气地球科学, 2019, 30(1): 39-50. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201901004.htmChen Y Q, Yan W, Han C W, et al. Structural and sedimentary basin transformation at the Cambrian/Neoproterozoic interval in Tarim Basin: Implication to subsalt dolostone exploration[J]. Natural Gas Geoscience, 2019, 30(1): 39-50(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201901004.htm [8] 杜金虎, 潘文庆. 塔里木盆地寒武系盐下白云岩油气成藏条件与勘探方向[J]. 石油勘探与开发, 2016, 43(3): 327-339. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603003.htmDu J H, Pan W Q. Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite, Tarim, NW China[J]. Petroleum Exploration and Development, 2016, 43(3): 327-339(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603003.htm [9] 田雷, 崔海峰, 陈永权, 等. 塔里木盆地中下寒武统白云岩储层分布特征及勘探意义[J]. 天然气地球科学, 2015, 26(增刊1): 130-138. doi: 10.11764/j.issn.1672-1926.2015.S1.0130Tian L, Cui H F, Chen Y Q, et al. The distribution characteristics and prospecting significance of the Middle and Lower Cambrian dolomite reservoir in Tarim Basin[J]. Natural Gas Geoscience, 2015, 26(S1): 130-138(in Chinese with English abstract). doi: 10.11764/j.issn.1672-1926.2015.S1.0130 [10] 张纪智, 王招明, 杨海军, 等. 塔里木盆地中深地区寒武系盐下白云岩油气来源及差异聚集[J]. 石油勘探与开发, 2017, 44(1): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701006.htmZhang J Z, Wang Z M, Yang H J, et al. Origin and differential accumulation of hydrocarbons in Cambrian sub-salt dolomite reservoirs in Zhongshen area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(1): 40-47(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701006.htm [11] 朱光有, 曹颖辉, 闫磊, 等. 塔里木盆地8000 m以深超深层海相油气勘探潜力与方向[J]. 天然气地球科学, 2018, 29(6): 755-772. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201806002.htmZhu G Y, Cao Y H, Yan L, et al. Petroleum exploration potential and favorable areas of ultra-deep marine strata deeper than 8000 meters in Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(6): 755-772(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201806002.htm [12] 熊益学, 陈永权, 关宝珠, 等. 塔里木盆地下寒武统肖尔布拉克组北部台缘带展布及其油气勘探意义[J]. 沉积学报, 2015, 33(2): 408-415. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201502020.htmXiong Y X, Chen Y Q, Guan B Z, et al. Distribution of northern platform margin and implications to favorable exploration regions on Lower Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Acta Sedimentologica Sinica, 2015, 33(2): 408-415(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201502020.htm [13] 白莹, 罗平, 王石, 等. 台缘微生物礁结构特点及储集层主控因素: 以塔里木盆地阿克苏地区下寒武统肖尔布拉克组为例[J]. 石油勘探与开发, 2017, 44(3): 349-358. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201703005.htmBai Y, Luo P, Wang S, et al. Structure characteristics and major controlling factors of platform margin microbial reef reservoirs: A case study of Xiaoerbulak Formation, Lower Cambrian, Akesu area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(3): 349-358(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201703005.htm [14] 白莹, 罗平, 刘伟, 等. 塔西北下寒武统风暴活动特征及其沉积学响应[J]. 沉积学报, 2019, 37(3): 565-578. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201903012.htmBai Y, Luo P, Liu W, et al. Storm activity characteristics and their sedimentary responses for the Xiaoerbulak Formation, Lower Cambrian, NW Tarim Basin[J]. Acta Sedimentologica Sinica, 2019, 37(3): 565-578(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201903012.htm [15] 黄擎宇, 胡素云, 潘文庆, 等. 台内微生物丘沉积特征及其对储层发育的控制: 以塔里木盆地柯坪-巴楚地区下寒武统肖尔布拉克组为例[J]. 天然气工业, 2016, 36(6): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201606006.htmHuang Q Y, Hu S Y, Pan W Q, et al. Sedimentary characteristics of intra-platform microbial mounds and their controlling effects on the development of reservoirs: A case study of the Lower Cambrian Xiaoerbulake Fm in the Keping-Bachu area, Tarim Basin[J]. Natural Gas Industry, 2016, 36(6): 21-29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201606006.htm [16] 姚春彦, 马东升, 丁海峰, 等. 新疆阿克苏地区早寒武世碳酸盐岩沉积环境: 微量元素和碳同位素证据[J]. 地球化学, 2011, 40(1): 63-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201101007.htmYao C Y, Ma D S, Ding H F, et al. Reconstruction of the Early Cambrian carbonate sedimentary environment in Akesu area of Xinjiang, China: Evidences from trace elements and carbon isotope excursion[J]. Geochimica, 2011, 40(1): 63-71(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201101007.htm [17] Wang L Y, Guo Q J, Zhao C Q, et al. Trace and rare earth elements geochemistry of sedimentary rocks in the Ediacaran-Cambrian transition from Tarim Basin, Northwest China: Constraints for redox environments[J]. Precambrian Research, 2020, 352: 105942. http://www.sciencedirect.com/science/article/pii/S0301926820305313 [18] Zhang Y G, Yang T, Hohl S V, et al. Seawater carbon and strontium isotope variations through the Late Ediacaran to Late Cambrian in the Tarim Basin[J]. Precambrian Research, 2020, 345: 105769. doi: 10.1016/j.precamres.2020.105769 [19] 管树巍, 吴林, 任荣, 等. 中国主要克拉通前寒武纪裂谷分布与油气勘探前景[J]. 石油学报, 2017, 38(1): 9-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201701002.htmGuan S W, Wu L, Ren R, et al. Distribution and petroleum prospect of Precambrian rifts in the main cratons, China[J]. Acta Petrolei Sinica, 2017, 38(1): 9-22(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201701002.htm [20] 贾承造. 中国塔里木盆地构造特征与油气[M]. 北京: 石油工业出版社, 1997: 438.Jia C Z. Structure and oil and gas resources in Tarim Basin, China[M]. Beijing: Petroleum Industry Press, 1997: 438(in Chinese). [21] 任荣, 管树巍, 吴林, 等. 塔里木新元古代裂谷盆地南北分异及油气勘探启示[J]. 石油学报, 2017, 38(3): 255-266. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201703002.htmRen R, Guan S W, Wu L, et al. The northsouth differentiation characteristic and its enlightenment on oil-gas exploration of the Neoproterozoic rift basin, Tarim Basin[J]. Acta Petrolei Sinica, 2017, 38(3): 255-266(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201703002.htm [22] 吴林, 管树巍, 任荣, 等. 前寒武纪沉积盆地发育特征与深层烃源岩分布: 以塔里木新元古代盆地与下寒武统烃源岩为例[J]. 石油勘探与开发, 2016, 43(6): 905-915.Wu L, Guan S W, Ren R, et al. The characteristics of Precambrian sedimentary basin and the distribution of deep source rock: A case study of Tarim Basin in Neoproterozoic and source rocks in Early Cambrian, Western China[J]. Petroleum Exploration and Development, 2016, 43(6): 905-915(in Chinese with English abstract). [23] 吴林, 管树巍, 杨海军, 等. 塔里木北部新元古代裂谷盆地古地理格局与油气勘探潜力[J]. 石油学报, 2017, 38(4): 375-385. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201704002.htmWu L, Guan S W, Yang H J, et al. The paleogeographic framework and hydrocarbon exploration potential of Neoproterozoic rift basin in northern Tarim Basin[J]. Acta Petrolei Sinica, 2017, 38(4): 375-385(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201704002.htm [24] 何金有, 邬光辉, 徐备, 等. 塔里木盆地震旦纪-寒武系不整合面特征及油气勘探意义[J]. 地质科学, 2010, 45(3): 698-706. doi: 10.3969/j.issn.0563-5020.2010.03.006He J Y, Wu G H, Xu B, et al. Characteristics and petroleum exploration significance of unconformity between Sinian and Cambrian in Tarim Basin[J]. Scientia Geologica Sinica, 2010, 45(3): 698-706(in Chinese with English abstract). doi: 10.3969/j.issn.0563-5020.2010.03.006 [25] 严威, 邬光辉, 张艳秋, 等. 塔里木盆地震旦纪-寒武纪构造格局及其对寒武纪古地理的控制作用[J]. 大地构造与成矿学, 2018, 42(3): 455-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201803004.htmYan W, Wu G H, Zhang Y Q, et al. Sinian-Cambrian tectonic framework in the Tarim Basin and its influences on the paleogeography of the Early Cambrian[J]. Geotectonica et Metallogenia, 2018, 42(3): 455-466(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201803004.htm [26] 朱永进, 倪新锋, 刘玲利, 等. 裂后沉降期碳酸盐岩缓坡沉积响应及成储特征: 以塔里木盆地下寒武统肖尔布拉克组为例[J]. 沉积学报, 2019, 37(5): 1044-1057. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905014.htmZhu Y J, Ni X F, Liu L L, et al. Depositional differentiation and reservoir potential and distribution of ramp systems during post-rift period: An example from the Lower Cambrian Xiaoerbulake Formation in the Tarim Basin, NW China[J]. Acta Sedimentologica Sinica, 2019, 37(5): 1044-1057(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905014.htm [27] 宋金民, 罗平, 杨式升, 等. 塔里木盆地下寒武统微生物碳酸盐岩储集层特征[J]. 石油勘探与开发, 2014, 41(4): 404-413. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201404004.htmSong J M, Luo P, Yang S S, et al. Reservoirs of Lower Cambrian microbial carbonates, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2014, 41(4): 404-413(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201404004.htm [28] 宋亚芳, 陈代钊, 郭川, 等. 塔里木盆地肖尔布拉克剖面肖尔布拉克组下段微生物碳酸盐岩沉积特征[J]. 沉积学报, 2020, 38(1): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202001005.htmSong Y F, Chen D Z, Guo C, et al. Depositional characteristics of microbial carbonates from the Lower Xiaoerbulak Formation in the Xiaoerbulake Section, Tarim Basin[J]. Acta Sedimentologica Sinica, 2020, 38(1): 55-63(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202001005.htm [29] Taylor S R, Mclennan S M. The continental crust: Its composition and evolution[M]. London: Blackwell Scientific Publications, 1985: 1-328. [30] 樊茹, 邓胜徽, 张学磊. 寒武系碳同位素漂移事件的全球对比性分析[J]. 中国科学: 地球科学, 2011, 41(12): 1829-1839. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201112012.htmFan R, Deng S H, Zhang X L. Global correlation of carbon isotope excursion through the Cambrian[J]. Science in China: Earth Sciences, 2011, 41(12): 1829-1839(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201112012.htm [31] Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/4): 27-49. [32] Kump L R, Arthur M A. Interpreting carbon-isotope excursions: Carbonates and organic matter[J]. Chemical Geology, 1999, 161(1): 181-198. http://eesc.columbia.edu/courses/w4937/Readings/Kump1999.pdf [33] Lindsay J F, Brasier M D. A carbon isotope reference curve for ca. 1700-1575 Ma, McArthur and Mount Isa Basins, Northern Australia[J]. Precambrian Research, 2000, 99(3): 271-308. http://www.lpi.usra.edu/lpi/lindsay/papers/paleoprot.pdf [34] Marshall J D, James D. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation[J]. Geological Magazine, 1992, 129(2): 143-160. doi: 10.1017/S0016756800008244 [35] 赵宗举, 张运波, 潘懋, 等. 塔里木盆地寒武系层序地层格架[J]. 地质论评, 2010, 56(5): 609-620. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201005001.htmZhao Z J, Zhang Y B, Pan M, et al. Cambrian sequence stratigraphic framework in Tarim Basin[J]. Geological Review, 2010, 56(5): 609-620(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201005001.htm [36] Ishikawa T, Ueno Y, Komiya T, et al. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: Prominent global-scale isotope excursions just before the Cambrian explosion[J]. Gondwana Research, 2008, 14(1/2): 193-208. http://www.onacademic.com/detail/journal_1000035050440410_4e7c.html [37] Kimura H, Matsumoto R, Kakuwa Y, et al. The Vendian-Cambrian δ13C record, North Iran: Evidence for overturning of the ocean before the Cambrian explosion[J]. Earth and Planetary Science Letters, 1997, 147(1): E1-E7. [38] 何秀彬, 徐备, 袁志云. 新疆柯坪地区新元古代晚期地层碳同位素组成及其对比[J]. 科学通报, 2007, 52(1): 107-113. doi: 10.3321/j.issn:0023-074X.2007.01.018He X B, Xu B, Yuan Z Y. Carbon isotope composition and its comparison through the Late Neoproterozoic in Keping area, Xinjiang[J]. Chinese Science Bulletin, 2007, 52(1): 107-113(in Chinese with English abstract). doi: 10.3321/j.issn:0023-074X.2007.01.018 [39] 张水昌, Wang R L, 金之钧, 等. 塔里木盆地寒武纪-奥陶纪优质烃源岩沉积与古环境变化的关系: 碳氧同位素新证据[J]. 地质学报, 2006, 80(3): 459-466. doi: 10.3321/j.issn:0001-5717.2006.03.020Zhang S C, Wang R L, Jin Z J, et al. The relationship between the Cambrian-Ordovician high-TOC source rock development and paleoenvironment variations in the Tariam Basin, Western China: Carbon and oxygen isotope evidence[J]. Acta Geologica Sinica, 2006, 80(3): 459-466(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2006.03.020 [40] 黄智斌, 刘丽静, 杨海军, 等. 塔里木地块寒武纪台地相区生物群落时空分布及其地层意义[J]. 地层学杂志, 2017, 41(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201701001.htmHuang Z B, Liu L J, Yang H J, et al. The spatial-temporal distribution of paleocommunities on the Cambrian Platform of the Tarim Block and its stratigraphic significance[J]. Journal of Stratigraphy, 2017, 41(1): 1-16(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201701001.htm [41] 严威, 郑剑锋, 陈永权, 等. 塔里木盆地下寒武统肖尔布拉克组白云岩储层特征及成因[J]. 海相油气地质, 2017, 22(4): 35-43. doi: 10.3969/j.issn.1672-9854.2017.04.005Yan W, Zheng J F, Chen Y Q, et al. Characteristics and genesis of dolomite reserovir in the Lower Cambrian Xiaoerblak Formation, Tarim Basin[J]. Marine Origin Petroleum Geology, 2017, 22(4): 35-43(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2017.04.005 [42] 陈汉林, 杨树锋, 董传万, 等. 塔里木盆地地质热事件研究[J]. 科学通报, 1997, 42(10): 1096-1099. doi: 10.3321/j.issn:0023-074X.1997.10.021Chen H L, Yang S F, Dong C W, et al. Study on thermal events in the Tarim Basin[J]. Chinese Science Bulletin, 1997, 42(10): 1096-1099(in Chinese with English abstract). doi: 10.3321/j.issn:0023-074X.1997.10.021 [43] 罗鹏, 刘存革, 刘永立, 等. 塔河油田下寒武统肖尔布拉克组储层发育特征及控制因素探讨[J]. 地质科技情报, 2019, 38(1): 152-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901016.htmLuo P, Liu C G, Liu Y L, et al. Reservoir characteristics and controlling factors of Cambrian Xiaoerbulake Formation in Tahe Oilfield[J]. Geological Science and Technology Information, 2019, 38(1): 152-159(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901016.htm [44] Zhou X, Chen D, Qing H, et al. Submarine silica-rich hydrothermal activity during the earliest Cambrian in the Tarim Basin, Northwest China[J]. International Geology Review, 2014, 56(15): 1906-1918. doi: 10.1080/00206814.2014.968885 [45] 张春宇, 管树巍, 吴林, 等. 塔西北地区早寒武世玉尔吐斯组热液作用及沉积模式[J]. 地学前缘, 2019, 26(1): 202-211. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901020.htmZhang C Y, Guan S W, Wu L, et al. Hydrothermal activity and depositional model of the Yurtus Formation in the Early Cambrian, NW Tarim, China[J]. Earth Science Frontiers, 2019, 26(1): 202-211(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901020.htm [46] 王坤, 胡素云, 胡再元, 等. 塔里木盆地古城地区寒武系热液作用及其对储层发育的影响[J]. 石油学报, 2016, 37(4): 439-453. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201604003.htmWang K, Hu S Y, Hu Z Y, et al. Cambrian hydrothermal action in Gucheng area, Tarim Basin and its influences on reservoir development[J]. Acta Petrolei Sinica, 2016, 37(4): 439-453(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201604003.htm [47] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis limestone, Wabaunsee County, Kansas, U.S.A. [J]. Chemical Geology, 1992, 99(1): 65-82. [48] Jones B, Manning D A. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111-129. http://www.sciencedirect.com/science/article/pii/000925419490085X [49] 常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1): 91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011Chang H J, Chu X H, Feng L J, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2009.01.011 [50] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1): 12-32. http://homepages.uc.edu/~algeot/Tribovillard-Algeo-etal-CG-2006.pdf [51] Algeo T J, Lyons T W. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21(1): PA1016. http://www.onacademic.com/detail/journal_1000035772152610_29ef.html [52] Keith M L, Weber J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28(10): 1787-1816. http://www.onacademic.com/detail/journal_1000035674938310_851e.html [53] 杨雪琪, 钟大康, 任影, 等. 重庆东部地区寒武系龙王庙组碳、氧同位素特征及其意义[J]. 古地理学报, 2017, 19(5): 865-878. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201705010.htmYang X Q, Zhong D K, Ren Y, et al. Characteristics and significance of carbon and oxygen isotopes of the Cambrian Longwangmiao Formation, eastern Chongqing[J]. Journal of Palaeogeography: Chinese Edition, 2017, 19(5): 865-878(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201705010.htm [54] 张秀莲. 碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系[J]. 沉积学报, 1985, 3(4): 17-30. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198504001.htmZhang X L. Carbonate carbon and oxygen isotope and their relationship between paleo-salinity and paleo-temperature[J]. Acta Sedimentologica Sinica, 1985, 3(4): 17-30(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198504001.htm [55] 邵龙义. 碳酸盐岩氧、碳同位素与古温度等的关系[J]. 中国矿业大学学报, 1994, 23(1): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD401.005.htmShao L Y. Carbonate carbon and oxygen isotope and their relationship between paleo-temperature[J]. Journal of China University of Mining & Technology, 1994, 23(1): 39-45(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD401.005.htm [56] 王洪浩, 李江海, 杨静懿, 等. 塔里木陆块新元古代-早古生代古板块再造及漂移轨迹[J]. 地球科学进展, 2013, 28(6): 637-647. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201306003.htmWang H H, Li J H, Yang J Y, et al. Paleo-plate reconstruction and drift path of Tarim Block from Neoproterozoic to Early Paleozoic[J]. Advances in Earth Science, 2013, 28(6): 637-647(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201306003.htm [57] 郑剑锋, 袁文芳, 黄理力, 等. 塔里木盆地肖尔布拉克露头区下寒武统肖尔布拉克组沉积相模式及其勘探意义[J]. 古地理学报, 2019, 21(4): 589-602. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201904004.htmZheng J F, Yuan W F, Huang L L, et al. Sedimentary facies model and its exploration significance of the Lower Cambrian Xiaoerblak Formation in Xiaoerblak area, Tarim Basin[J]. Journal of Palaeogeography: Chinese Edition, 2019, 21(4): 589-602(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201904004.htm