Analysis of deformation and stress evolution of thrust structure: A case of Jurassic in east Kuqa Subbasin
-
摘要: 逆冲构造是较为常见的构造形式,其由弱到强的变形过程及应力定量分布状态目前还不是很清楚。以库车前陆盆地东部逆冲构造为例,基于构造剖面的解析,将逆冲构造活动分为4个阶段:初始期、发展期、成熟期和改造期,并运用有限元计算分析方法对不同阶段剖面进行了精细数值模拟计算。研究表明:逆冲构造的扩展并不是一个简单线性发展的过程,而是前翼、后翼不断往复迁移推进的历程。简单的逆冲断褶带发育于逆冲构造初始期,应力主要集中在后翼;变形向后翼扩展,转折端范围不断增加对应逆冲构造发展期,应力主要集中于转折端;变形向前翼扩展,前翼范围开始增大对应逆冲构造成熟期,应力主要集中于转折端和前翼靠近转折端区域;后翼掀斜,前翼竖直,前翼前缘大量新的逆冲断层发育对应逆冲构造改造期,应力主要集中于前翼前缘。理清逆冲构造变形过程及应力集中分布范围的差异,可为后期指导裂缝发育部位以及超压异常发育带的预测奠定较好的基础。Abstract: Thrust structure is a relatively common structural form, and its deformation process from weak to strong and the quantitative distribution of stress are not very clear. This study analyzes the tectonic profile in the eastern part of Kuqa Subbasin, and according to the complexity of deformation, the thrust tectonic activity can be divided into four stages: initial stage, development stage, mature stage, and reformation stage. And it uses the finite element calculation and analysis method to carry out detailed numerical simulation calculation on the different stages of the section. Research suggests that the expansion of the thrust structure is not a simple linear development process, but a process of continuous migration and advancement of the front and rear wings. A simple thrust fold is the initial stage of the thrust structure, and the stress is mainly concentrated on the rear wing; after deformation, it expands to the rear wing and the end area increasing continuously is the development period of the thrust structure, and the stress is mainly concentrated on the end; it expands to the front wing after deformation and the wing range beginning to increase is the mature stage of the thrust structure, and the stress is mainly concentrated on the end and the front wing near the end; the rear wing is tilted, the front wing is vertical, and a large number of new thrust faults developed at the front edge of the front wing are thrust structures; it is the period of thrust structural transformation, and the stress is mainly concentrated on the front edge of the front wing. To clarify the difference in the deformation process of the thrust structure and the distribution range of the stress concentration will lay a good foundation for the prediction of the fracture development position and the abnormal development zone of overpressure in the later stage.
-
Key words:
- thrust structure /
- extended form /
- stress distribution /
- difference
-
图 1 库车东北部4条地震剖面的位置图(地层代号对应的地层组名称见图 4)
Figure 1. Location map of the four seismic sections in the northeast of Kuqa
图 2 库车坳陷东部构造剖面图(地层代号对应的地层组名称见图 4)
Figure 2. Structural profile of the eastern part of Kuqa Depression
表 1 逆冲构造差异变形分析
Table 1. Differential deformation analysis of thrust structure
区域 期次 变形模式 复杂程度 滑脱分层 应力方位 垂直隆升量/km 水平缩短量/km 东部 多期 继承性基底冲断 单-基底冲断,以隆升为主 无 北北东-南南西 3~5 8.8 中部 一期 简单性基底冲断 盐构造影响大,浅层变形复杂化 有 北北西-南南东 4~7 13.5 西部 一期 多层次、被改造和复杂化 浅层横向缩短量大,变形强烈 有 北北西-南南东 >10 21.7 表 2 库车坳陷力学物理模型材料参数值
Table 2. Material parameter value of mechanical and physical model in Kuqa Depression
层位 密度/(g·cm-3) 杨氏模量/GPa 泊松比 岩盐发育 岩盐不发育 Q1x 施加重力 N2k 2.10 15 15 0.26 N1k 2.20 20 20 0.25 N1j 2.16 5 20 0.42 E2-3s 2.21 20 20 0.30 E1-2km 2.01 6 21 0.35 K 2.34 25 25 0.23 J2k 2.36 30 30 0.25 J1y 2.13 6 6 0.41 J1a 2.38 34 34 0.24 Pre-J1a 2.48 39 39 0.25 断裂带 2.00 8 8 0.32 注:数据主要来自西南石油大学岩石力学实验室三轴应力实验,结合岩层的厚度和岩性的组合加以类比修正;地层代号见图 4 表 3 库车坳陷东部区域构造模型边界条件的选择
Table 3. Selection of boundary conditions for the structural model in the eastern part of the Kuqa Depression
时期 方案 垂直x轴的面 垂直y轴的面 备注 x正方向 x负方向 y正方向 y负方向 N2k→Q Ⅰ 施加向x负方向的位移量,y方向约束 全约束 自由 x方向自由
y方向约束经过试算,方案Ⅴ结果最佳,后面所有的计算均按方案Ⅴ进行计算。由于是二维平面模型,无z方向上的边界条件 Ⅱ 施加向x负方向的位移量 y方向自由
x方向约束自由 x方向自由y方向约束 Ⅲ 施加向x负方向的位移量, y方向约束 y方向自由
x方向约束施加沿y负方向的应力 x方向自由y方向约束 Ⅳ 施加向x负方向的位移量 全约束 施加沿y负方向的应力 x方向自由y方向约束 Ⅴ 施加向x负方向的梯度位移量 全约束 施加沿y负方向的梯度应力 x方向自由y方向约束 表 4 逆冲构造不同阶段表现形式分析
Table 4. Analysis of the manifestation of the thrust structure at different stages
逆冲构造不同阶段 侏罗系阿合组(众数) 应力集中区域 变形方式 应力/MPa 缩短量/% 隆升量/10-4 南翼 转折端 北翼 初始期 8~29.21 25.16~50.37 49~54 5.97 1.3~4.13 北翼 隆升 发展期 18.88~32.16 67.63~71.7 24.48~46.96 8.24 2.223~4.837 转折端 后展 成熟期 64.76~87.13 86.59~91.89 23.5~61.1 10.55 2.11~5.826 南翼 前展 改造期 144.54~153.39 6.72~40.60 15.2~57.4 17.61 35.2~71.8 前缘 前展 -
[1] 裴振洪. 南大巴山构造带中新生代构造变形特征研究[J]. 石油勘探与开发, 2007, 29(3): 269-274.Pei Z H. Research on Mesozoic and Cenozoic structural deformation characteristics of south Dabashan structural belt[J]. Petroleum Exploration and Development, 2007, 29(3): 269-274(in Chinese with English abstract). [2] 胡健民, 施炜, 渠洪杰, 等. 秦岭造山带大巴山弧形构造带中生代构造变形[J]. 地学前缘, 2009, 16(3): 49-68. doi: 10.3321/j.issn:1005-2321.2009.03.003Hu J M, Shi W, Qu H J, et al. Mesozoic deformation of Dabashan curvilinear structural belt of Qinling orogen[J]. Earth Science Frontiers, 2009, 16(3): 49-68(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2009.03.003 [3] 刘重庆, 周建勋, 郎建. 多层滑脱条件下褶皱-冲断带形成制约因素研究: 以川东-雪峰构造带为例[J]. 地球科学与环境学报, 2013, 35(2): 45-55. doi: 10.3969/j.issn.1672-6561.2013.02.005Liu C Q, Zhou j X, Lang J. Study on restrictive factor of fold-thrust belt formation with multiple decollements: Taking eastern Sichuan-Xuefeng tectonic belt as an example[J]. Journal of Earth Sciences and Environment, 2013, 35(2): 45-55(in Chinese with English abstract). doi: 10.3969/j.issn.1672-6561.2013.02.005 [4] 谢国爱, 贾东, 张庆龙, 等. 川东侏罗山式褶皱构造带的物理模拟研究[J]. 地质学报, 2013, 87(6): 773-778. doi: 10.3969/j.issn.0001-5717.2013.06.003Xie G A, Jia D, Zhang Q L, et al. Physical modeling of the Jura-type folds in eastern Sichuan[J]. Acta Geologica Sinica, 2013, 87(6) 773-778(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2013.06.003 [5] 张旭亮. 鄂西-渝东地区构造演化及成因机制[D]. 北京: 中国地质大学(北京), 2019: 9-11.Zhang X L. Tectonic evolution and genetic mechanism of western Hubei and eastern Chongqingarea[D]. Beijing: China University of Geosciences (Beijing), 2019: 9-11(in Chinese with English abstract). [6] 沈传波, 梅廉夫, 徐振平, 等. 四川盆地复合盆山体系的结构构造和演化[J]. 大地构造与成矿学, 2007, 31(3): 288-299. doi: 10.3969/j.issn.1001-1552.2007.03.004Shen C B, Mei L F, Xu Z P, et al. Architecture and tectonic evolution of composite basin-mountain system in Sichuan Basin and its adjacent areas[J]. Geotectonica et Metallogenia, 2007, 31(3): 288-299(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2007.03.004 [7] 梅廉夫, 刘昭茜, 汤济广, 等. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据[J]. 地球科学: 中国地质大学学报, 2010, 35(2): 161-174. doi: 10.3969/j.issn.1672-6561.2010.02.008Mei L F, Liu Z Q, Tang J G, et al. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan Provinces of China: Evidence from apatite fission track and balanced cross-section[J]. Earth Science: Journal of China University of Geosciences, 2010, 35(2): 161-174(in Chinese with English abstract). doi: 10.3969/j.issn.1672-6561.2010.02.008 [8] 李三忠, 王涛, 金宠, 等. 雪峰山基底隆升带及其邻区印支期陆内构造特征与成因[J]. 吉林大学学报: 地球科学版, 2011, 41(1): 93-105. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201101013.htmLi S Z, Wang T, Jin C, et al. Features and causes of indosinian intracontinental structures in the Xuefengshan PreCambrian basement and its neighboring regions[J]. Journal of Jilin University: Earth Science Edition, 2011, 41(1): 93-105(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201101013.htm [9] 朱志澄. 逆冲推覆构造研究进展和今后探索趋向[J]. 地学前缘, 1995, 2(1/2): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY501.009.htmZhu Z C. Progress and trends of researches on thrust-nappe tectonics[J]. Earth Science Frontiers, 1995, 2(1/2): 51-58(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY501.009.htm [10] 金宠, 李三忠, 王岳军, 等. 雪峰山陆内复合构造系统印支-燕山期构造穿时递进特征[J]. 石油与天然气地质, 2009, 30(5): 598-607. doi: 10.3321/j.issn:0253-9985.2009.05.010Jin C, Li S Z, Wang Y J, et al. Diachronous and progressive deformation during the Indosinian-Yanshanian movements of the Xuefeng Mountain intracontinental composite tectonic system[J]. Oll and Gas Geology, 2009, 30(5): 598-607(in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.2009.05.010 [11] 何登发, 李德生, 张国伟, 等. 四川多旋回叠合盆地的形成与演化[J]. 地质科学, 2011, 46(3): 589-606. doi: 10.3969/j.issn.0563-5020.2011.03.001He D F, Li D S, Zhang G W, et al. Formation and evolution of multi-cycle superposed Sichuan Basin, China[J]. Chinese Journal of Geology, 2011, 46(3): 589-606(in Chinese with English abstract). doi: 10.3969/j.issn.0563-5020.2011.03.001 [12] 张岳桥, 董树文, 李建华, 等. 中生代多向挤压构造作用与四川盆地的形成和改造[J]. 中国地质, 2011, 38(2): 233-250. doi: 10.3969/j.issn.1000-3657.2011.02.001Zhang Y Q, Dong S W, Li J H, et al. Mesozoic multi-directional compressional tectonics and formation-reformation of Sichuan Basin[J]. Geology in China, 2011, 38(2): 233-250(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2011.02.001 [13] 万天丰. 论构造地质学和大地构造学的几个重要问题[J]. 地学前缘, 2014, 21(1): 132-149. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201401015.htmWan T F. Discussion on some important problems in structural geology and tectonics[J]. Earth Science Frontiers, 2014, 21(1): 132-149(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201401015.htm [14] 李锦轶, 张进, 刘建峰, 等. 中国地壳结构构造与形成过程: 来自构造变形的约束[J]. 地质力学学报, 2019, 25(5): 678-698. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905006.htmLi J Y, Zhang J, Liu J F, et al. Crustal tectonic framework of China and its formation processes: Constraints from stuctural deformation[J]. Journal of Geomechanics, 2019, 25(5): 678-698(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905006.htm [15] 周建勋. 断裂系统形成机制: 来自物理模拟实验的新启示[J]. 自然杂志, 2011, 33(5): 260-265. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201105004.htmZhou J X. Formation mechanisms of fault systems: Some new insights from physical modeling[J]. Chinese Journal of Nature, 2011, 33(5): 260-265(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201105004.htm [16] He W G, Zhou J X, Yuan K. Deformation evolution of eastern Sichuan-Xuefeng fold-thrust belt in South China: Insights from analogue modelling[J]. Journal of Structural Geology, 2018, 109: 74-85. doi: 10.1016/j.jsg.2018.01.002 [17] 汪新, 唐鹏程, 谢会文, 等. 库车坳陷西段新生代盐构造特征及演化[J]. 大地构造与成矿学, 2009, 33(1): 57-65. doi: 10.3969/j.issn.1001-1552.2009.01.008Wang X, Tang P C, Xie H W, et al. Cenozoic salt structures and evolution in the western Kuqa Depression, Tarim Basin, China[J]. Geotectonica et Metallogenia, 2009, 33(1): 57-65(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2009.01.008 [18] 张玮, 徐振平, 赵凤全, 等. 库车坳陷东部构造变形样式及演化特征[J]. 新疆石油地质, 2019, 40(1): 48-83. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901008.htmZhang W, Xu Z P, Zhao F Q, et al. Structural deformation styles and tectonic evolution characteristics in eastern Kuqa Depression[J]. Xinjiang Petroleum Geology, 2019, 40(1): 48-83(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901008.htm [19] 成亚. 库车坳陷东部构造分析: 先存断裂与膏盐岩发育对构造变形的影响[D]. 杭州: 浙江大学, 2020: 18-21.Cheng Y. Structural analysis in the eastern Kuqa Depression: Influence of pre-existing faults and gypsum salt deposits on structural deformation[D]. Hangzhou: Zhejiang University, 2020: 18-21(in Chinese with English abstract). [20] 张仲培, 王清晨. 断层滑动分析与古应力恢复研究综述[J]. 地球科学进展, 2004, 19(4): 605-613 doi: 10.3321/j.issn:1001-8166.2004.04.018Zhang Z P, Wang Q C. The summary and comment on fault-slip analysis and palaeostress reconstruction[J]. Advances in Earth Science, 2004, 19(4): 605-613(in Chinese with English abstract). doi: 10.3321/j.issn:1001-8166.2004.04.018 [21] 汤双立, 颜丹平, 汪昌亮, 等. 华南雪峰山薄皮-厚皮构造转换过程: 来自桑植-安化剖面的证据[J]. 现代地质, 2011, 25(1): 22-30. doi: 10.3969/j.issn.1000-8527.2011.01.003Tang S L, Yan D P, Wang C L, et al. Deformational process from thick-skinned to thin-skinned thrust in Xuefeng Mountain, South China: Evidence from Sangzhi-Anhua tectonic section[J]. Geoscience, 2011, 25(1): 22-30(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2011.01.003 [22] 邓宾, 何宇, 黄家强, 等. 前陆盆地形成与演化砂箱物理模拟启示: 以四川盆地西部龙门山为例[J]. 石油与天然气地质, 2021, 42(2): 401-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202102012.htmDeng B, He Yu, Huang J Q, et al. Analogue modeling insights to foreland basin growth: A case study on the Longmengshan thrust belt in western Sichuan Basin[J]. Oil and Gas Geology, 2021, 42(2): 401-415(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202102012.htm [23] 黄光明, 李忠海, 周永智. 塔西南甫沙地区被动顶板双重构造和乌泊尔地区背驮盆地的数值模拟[J]. 地质学报, 2017, 91(8): 1674-1693. doi: 10.3969/j.issn.0001-5717.2017.08.002Huang G M, Li Z H, Zhou Y Z. The different origins between passive-roof duplex in the Fusha area and Piggyback Basin in the Wupoer area in southwestern Tarim Basin based on numerical modelling study[J]. Acta Geologica Sinica, 2017, 91(8): 1674-1693(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2017.08.002 [24] 杨庚, 王晓波. 川西龙门山逆冲带北段多断层同时逆冲几何学证据[J]. 大地构造与成矿学, 2020, 44(6): 1027-1045. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202006001.htmYang G, Wang X B. Geometric evidence for synchronous thrusting and folding of the northern Longmengshan thrust-fold belt, West China[J]. Geotectonica et Metallogenia, 2020, 44(6): 1027-1045(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202006001.htm [25] Chen J, Wang S L, Shang Y J. Geometric tests and their application to fault-related folds in Kuqa[J]. Journal of Asian Earth Sciences, 2005, 25(3): 473-480. doi: 10.1016/j.jseaes.2004.04.008 [26] Jia C Z, Li Q M. Petroleum geology of Kela-2, the most productive gas field in China[J]. Marine and Petroleum Geology, 2008, 25(4/5): 335-343. [27] Jin Z J, Yang M H, Lü X X, et al. The tectonics and petroleum system of the Qiulitagh fold and thrust belt, northern Tarim Basin, NW China[J]. Marine and Petroleum Geology, 2008, 25(8): 767-777. doi: 10.1016/j.marpetgeo.2008.01.011 [28] 贾承造. 环青藏高原巨型盆山体系构造与塔里木盆地油气分布规律[J]. 大地构造与成矿学, 2009, 33(1): 1-9. doi: 10.3969/j.issn.1001-1552.2009.01.001Jia C Z. The structures of basin and range system around the Tibtan Plateau and the distribution of oil and gas in the Tarim Basin[J]. Geotectonica et Metallogenia, 2009, 33(1): 1-9(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2009.01.001 [29] 卢华复, 贾东, 陈楚铭, 等. 库车新生代构造性质和变形时间[J]. 地学前缘, 1999, 6(4): 215-221. doi: 10.3321/j.issn:1005-2321.1999.04.003Lu H F, Jia D, Chen C M, et al. Nature and timing of the Kuqa Cenozoic structures[J]. Earth Science Frontiers, 1999, 6(4): 215-221(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1999.04.003 [30] 何登发, 周新源, 杨海军, 等. 库车坳陷的地质结构及其对大油气田的控制作用[J]. 大地构造与成矿学, 2009, 33(1): 19-32. doi: 10.3969/j.issn.1001-1552.2009.01.003He D F, Zhou X Y, Yang H J, et al. Geological structure and its controls on giant oil and gas fields in Kuqa Depression, Tarim Basin: A clue from new shot seismic data[J]. Geotectonica et Metallogenia, 2009, 33(1): 19-32(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2009.01.003 [31] Li Z, Song W J, Peng S T, et al. Mesozoic-Cenozoic tectonic relationships between the Kuqa subbasin and Tianshan, northwest China: Constraints from depositional records[J]. Sedimentary Geology, 2004, 172(3/4): 223-249. [32] Chen S P, Tang L J, Jin Z J, et al. Thrust and fold tectonics and the role of evaporites in deformation in the western Kuqa foreland of Tarim Basin, northweast China[J]. Marine and Petroleum Geology, 2004, 21(8): 1027-1042. doi: 10.1016/j.marpetgeo.2004.01.008 [33] 贾承造. 塔里木盆地构造特征与油气聚集规律[J]. 新疆石油地质, 1999, 20(3): 177-183. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD903.000.htmJia C Z. Structural characteristics and oil and gas accumulation rules in Tarim Basin[J]. Xinjiang Petroleum Geology, 1999, 20(3): 177-183(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD903.000.htm [34] 曹婷. 库车坳陷东部碎屑岩层新生代断层传播褶皱过程中的裂缝发育模式[D]. 杭州: 浙江大学, 2018: 65-66.Cao T. Fracture patterns during the Cenozoic fault-propagation folding process: Insights from the clastic rock of eastern Kuqa Depression[D]. Hangzhou: Zhejiang University, 2018: 65-66(in Chinese with English abstract). [35] Mitra S. Falit-propagation folds: Geometry, kinematic evolution, and hydrocarbon traps[J]. AAPG Bulletin, 1990, 74(6): 621-645. http://www.researchgate.net/publication/249895964_Fault_Propagation_Folds_Geometry_Kinematic_Evolution_and_Hydrocarbon_Traps_ABSTRACT [36] 张凤奇, 王震亮, 赵雪娇, 等. 库车坳陷迪那2气田异常高压成因机制及其油气成藏的关系[J]. 石油学报, 2012, 33(5): 739-845. doi: 10.3969/j.issn.1001-8719.2012.05.006Zhang F Q, Wang Z L, Zhao X J, et al. Genetic mechanism of overpressure and its relationship with hydrocarbon accumulation in Dina-2 Gasfield, Kuqa Depression[J]. Acta Petrolei Sinica, 2012, 33(5): 739-845(in Chinese with English abstract). doi: 10.3969/j.issn.1001-8719.2012.05.006 [37] 詹彦, 侯贵廷, 孙雄伟, 等. 库车坳陷东部侏罗系砂岩构造裂缝定量预测[J]. 高校地质学报, 2014, 20(2): 294-302. doi: 10.3969/j.issn.1006-7493.2014.02.014Zhan Y, Hou G T, Sun X W, et al. Quantitative prediction of tectonic fractures of Jurassic sandstones in the eastern Kuche Depression[J]. Geological Journal of China Universities, 2014, 20(2): 294-302(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2014.02.014 [38] 郑淳芳, 侯贵廷, 詹彦, 等. 库车坳陷新生代构造应力场恢复[J]. 地质通报, 2016, 35(1): 130-139. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201601012.htmZheng C F, Hou G T, Zhan Y, et al. An analysis of Cenozoic tectonic stress fields in the Kuqa Depression[J]. Geological Bulletin of China, 2016, 35(1): 130-139(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201601012.htm [39] 刘昭茜, 罗开平, 唐永, 等. 四川盆地元坝-通南巴地区关键构造期构造特征及陆相致密砂岩天然气成藏响应[J]. 地球科学, 2019, 44(3): 756-772. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903006.htmLiu Z Q, Luo K P, Tang Y, et al. Critical tectonic periods and the response of gas accumulation in Non-Marine tight sandstone reservoir in Yuanba-Tongnanba area, Sichuan Basin[J]. Earth Science, 2019, 44(3): 756-772(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903006.htm [40] 刘树根, 罗志立, 赵锡奎, 等. 中国西部盆山系统的耦合关系及其动力学模式: 以龙门山造山带-川西前陆盆地系统为例[J]. 成都理工大学学报: 自然科学版, 2003, 77(2): 177-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200302007.htmLiu S G, Luo Z L, Zhao X K, et al. Coupling relationships of sedimentary basin-orogenic belt systems and their dynamic models in West China: A case study of the Longmenshan orogenic belt -west Sichuan Foreland Basin system[J]. Journal of Chengdu University of Technology: Science and Technology Edition, 2003, 77(2): 177-186(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200302007.htm [41] 王春阳. 塔西南褶皱-冲断带变形控制因素物理模拟研究[D]. 杭州: 浙江大学, 2014: 79-81.Wang C Y. The deformation controlling factors of fold-and-thrust belt in SW Tarim Basin: Physical analogue modeling study[D]. Hangzhou: Zhejiang University, 2014: 79-81(in Chinese with English abstract). [42] 赵红格. 鄂尔多斯盆地西部构造特征及演化[D]. 西安: 西北大学, 2003: 18-32.Zhao H G. Structural characteristics and the evolution in western Ordos Basin[D]. Xi'an: Northwestern University, 2003: 18-32(in Chinese with English abstract).