留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含CaCl2水基聚合物钻井液沿井周地层渗透规律研究

刘天乐 全奇 蒋国盛 郑少军 李丽霞 余尹飞

刘天乐, 全奇, 蒋国盛, 郑少军, 李丽霞, 余尹飞. 含CaCl2水基聚合物钻井液沿井周地层渗透规律研究[J]. 地质科技通报, 2021, 40(5): 263-271. doi: 10.19509/j.cnki.dzkq.2021.0510
引用本文: 刘天乐, 全奇, 蒋国盛, 郑少军, 李丽霞, 余尹飞. 含CaCl2水基聚合物钻井液沿井周地层渗透规律研究[J]. 地质科技通报, 2021, 40(5): 263-271. doi: 10.19509/j.cnki.dzkq.2021.0510
Liu Tianle, Quan Qi, Jiang Guosheng, Zheng Shaojun, Li Lixia, Yu Yinfei. Study on permeability law of water-based polymer drilling fluid containing CaCl2 in wellbore formation[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 263-271. doi: 10.19509/j.cnki.dzkq.2021.0510
Citation: Liu Tianle, Quan Qi, Jiang Guosheng, Zheng Shaojun, Li Lixia, Yu Yinfei. Study on permeability law of water-based polymer drilling fluid containing CaCl2 in wellbore formation[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 263-271. doi: 10.19509/j.cnki.dzkq.2021.0510

含CaCl2水基聚合物钻井液沿井周地层渗透规律研究

doi: 10.19509/j.cnki.dzkq.2021.0510
基金项目: 

国家自然科学基金项目 42072343

国家重点研发计划项目 2016YFE0204300

中国地质大学(武汉)中央高校基本科研业务费专项资金项目 1810491A25

详细信息
    作者简介:

    刘天乐(1984-), 男, 副教授, 主要从事非常规能源勘探与开发方面的研究。E-mail: liutianle2008@163.com

    通讯作者:

    蒋国盛(1965-), 男, 教授, 博士生导师, 主要从事非常规能源勘探与开发方面的研究。E-mail: jgs65@sina.vip.com

  • 中图分类号: P634.6

Study on permeability law of water-based polymer drilling fluid containing CaCl2 in wellbore formation

  • 摘要: 利用微生物诱导碳酸钙沉积(MICP)技术来提高油气井固井二界面胶结质量近年来受到了越来越多的重视。当前,针对3 000 m以浅油气井已实现了含成矿微生物的固井水泥浆技术。为了使固井水泥浆滤液中的成矿微生物在二界面处高效发挥MICP作用以提高二界面胶结质量,还需在钻井过程中利用钻井液携带CaCl2的渗透向井周地层中预先注入一定量的钙源。因此,有必要研究含CaCl2钻井液在井周地层的渗透规律,从而合理控制CaCl2的注入量和钻井成本。基于此,以当前常用的环保水基聚合物钻井液为基本载体,综合考虑钻井液渗透时在井壁处泥饼动态形成机理、井周地层物性参数变化规律以及含CaCl2水基聚合物钻井液流变性等因素,利用理论计算与模拟实验相结合的方法,建立了含CaCl2水基聚合物钻井液滤液沿井周地层渗透量及渗透距离的定量预测模型。该预测模型的计算结果与模拟实验测试结果吻合程度较高,证实该预测模型具有较好的可靠性,有助于为钻井生产企业合理优化钻井液和固井水泥浆施工工艺提供理论支持。

     

  • 图 1  钻井液沿井周地层发生渗透示意图

    Figure 1.  Schematic diagram of drilling fluid along the wellbore formation

    图 2  钻井液滤液渗透过程的几何图(井眼Ⅰ、泥饼Ⅱ、侵入区Ⅲ、未侵入区Ⅳ)

    Figure 2.  Geometric diagram of filtrate infiltration process of drilling fluid

    图 3  变温变压可视化钻完井液渗透模拟实验装置

    Figure 3.  Variable temperature and variable pressure visualization drilling and completion fluid penetration simulation device

    图 4  模拟实验装置结构示意图

    1.氮气瓶;2.调压阀;3.气压表;4.空气压缩机;5.增压泵;6.储气罐;7.活塞容器;8.天然砂岩岩心;9.回压装置;10.手摇泵;11.滤液回收容器;12.透明胶套;13.环压腔;14.可视化窗口;15.环压入口;16.控制阀;17.液压表;18.液体流量计

    Figure 4.  Schematic diagram of simulated experimental device structure

    图 5  泥饼厚度随时间变化的理论计算结果

    Figure 5.  Theoretical calculation results of mud cake thickness changing with time

    图 6  含CaCl2水基聚合物钻井液体积流量随时间变化的理论计算结果

    Figure 6.  Theoretical calculation results of volume flow of CaCl2 containing water-based polymer drilling fluid

    图 7  含/不含CaCl2水基聚合物钻井液累计渗透量的理论计算值和实验测试值

    Figure 7.  Theoretical calculated value and experimental test value of cumulative penetration of water-based polymer drilling fluid with or without CaCl2

    图 8  不同时刻的含CaCl2水基聚合物钻井液累计渗透量的理论计算值和实验测试值

    Figure 8.  Theoretical calculated value and experimental test value of cumulative penetration of water-based polymer drilling fluid containing CaCl2 at different moments

    图 9  含/不含CaCl2水基聚合物钻井液渗透距离的理论计算值和实验测试值

    Figure 9.  Theoretical calculation value and experimental test value of penetration distance of water-based polymer drilling fluid with or without CaCl2

    图 10  不同时刻的含CaCl2水基聚合物钻井液渗透距离的理论计算值和实验测试值

    Figure 10.  Theoretical calculated value and experimental test value of penetration distance of CaCl2 containing water-based polymer drilling fluid at different moments

    表  1  CaCl2加量对水基聚合物钻井液塑性黏度的影响

    Table  1.   Effect of CaCl2 dosage on rheology of water-based polymer drilling fluid

    钻井液编号 CaCl2加量wB/% 塑性黏度/(mPa·s)
    1 0 15.28
    2 5 12.87
    3 10 12.72
    4 15 17.15
    5 20 22.15
    6 25 24.81
    7 30 27.00
    8 40 32.27
    9 50 42.53
    下载: 导出CSV

    表  2  含钻屑钻井液的基本性质

    Table  2.   Basic properties of drilling fluids containing drill cuttings

    钻井液 w(CaCl2)/% 密度ρ/(g·cm-3) 塑性黏度μf/(mPa·s) 固相密度Cs/(g·cm-3) 泥饼孔隙度φc/% 泥饼密度ρc/(g·cm-3) 泥饼渗透率kc/m2
    A 0 1.31 15.28 0.36 10.59 2.51 2.2×10-17
    B 20 1.31 22.15 0.36 10.51 2.52 1.5×10-17
    下载: 导出CSV

    表  3  砂岩岩心物性参数及实验条件

    Table  3.   Physical parameters and experimental conditions of sandstone cores

    岩心 岩心尺寸/mm 岩心孔隙度φ/% 岩心渗透率k0/m2 岩心密度ρ/(g·cm-3) 驱动压力pw/MPa 围压pd/MPa 地层压力pe/MPa
    Φ25.01×99.95 15.61 1.13×10-14 2.36 3
    Φ24.94×99.97 15.56 1.15×10-14 2.35 2 4.5 1
    Φ25.02×99.98 19.34 5.91×10-14 2.32 3
    下载: 导出CSV
  • [1] 宁伏龙, 方翔宇, 李彦龙, 等. 天然气水合物开采储层出砂研究进展与思考[J]. 地质科技通报, 2020, 39(1): 137-148. https://dzkjqb.cug.edu.cn/CN/abstract/abstract9934.shtml

    Ning F L, Fang X Y, Li Y L, et al. Research status and perspective on wellbore sand production from hydrate reservoirs[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 137-148(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract9934.shtml
    [2] 张翼, 方俊伟, 于培志, 等. 塔里木盆地顺北-区柯吐尔组失稳特征及钻井液技术研究[J]. 地质科技情报, 2019, 38(4): 281-286. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904030.htm

    Zhang Y, Fang J W, Yu P Z, et al. Instability characteristics and drilling fluid technology of the Ketur Formation in Shunbei District 1, Tarim Basin[J]. Geological Science and Technology Information, 2019, 38(4): 281-286(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904030.htm
    [3] 刘天乐, 郑少军, 王韧, 等. 固井水泥浆侵入对近井壁水合物稳定的不利影响[J]. 石油学报, 2018, 39(8): 937-946. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201808009.htm

    Liu T L, Zheng S J, Wang R, et al. The adverse effect of cement slurry invasion on the stability of hydrates near the borehole wall[J]. Acta Petrolei Sinica, 2018, 39(8): 937-946(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201808009.htm
    [4] Ramézani H, Akkal R, Cohaut N, et al. On the filtrate drilling fluid formation and near well-bore damage along the petroleum well[J]. Journal of Petroleum Science & Engineering, 2015, 135(6): 299-313. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=111142537&site=ehost-live
    [5] Xu C, Kang Y, You Z, et al. Review on formation damage mechanisms and processes in shale gas reservoir: Known and to be known[J]. Journal of Natural Gas Science & Engineering, 2016, 49(36): 1208-1219. http://www.researchgate.net/profile/Chengyuan_Xu2/publication/301599043_Review_on_formation_damage_mechanisms_and_processes_in_shale_gas_reservoir_Known_and_to_be_known/links/58098d3908ae993dc050a4cc.pdf
    [6] Yuan H, Sarica C, Miska S. An experimental and analytical study of single-phase liquid flow in a horizontal well[J]. Journal of Energy Resources Technology, 1997, 119(1): 20-25. doi: 10.1115/1.2794217
    [7] 王建华, 鄢捷年, 郑曼, 等. 钻井液固相和滤液侵入储层深度的预测模型[J]. 石油学报, 2009, 30(6): 923-926. doi: 10.3321/j.issn:0253-2697.2009.06.022

    Wang J H, Yan J N, Zheng M, et al. Drilling fluid solid phase and filtrate invade the reservoir depth prediction model[J]. Acta Petrolei Sinica, 2009, 30(6): 923-926(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2009.06.022
    [8] 周福建, 宋广顺. 用现场资料预测钻井液损害储层深度[J]. 钻井液与完井液, 2000, 17(4): 8-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW200004002.htm

    Zhou F J, Song G S. Using field data to predict the depth of reservoir damage by drilling fluid[J]. Drilling Fluids and Completion Fluids, 2000, 17(4): 8-10(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW200004002.htm
    [9] Civan F. Practical model for compressive cake filtration including fine particle invasion[J]. AIChE Journal, 1998, 44(11): 2388-2398. doi: 10.1002/aic.690441107
    [10] Parn-Anurak S, Engler T W. Modeling of fluid filtration and near wellbore damiage along a horizontal well[J]. Journal of Petroleum Science & Engineering, 2005, 46(3): 149-160. http://www.onacademic.com/detail/journal_1000034030418710_069e.html
    [11] Liu X H, Civan F. Formation damage and filter cake buildup in laboratory core tests: Modeling and model-assisted analysis[J]. SPE, 2006: 25215. http://www.onacademic.com/detail/journal_1000039068883410_3408.html
    [12] Martins A L, Waldmann A T A, Aragao A F L, et al. Predicting and monitoring fluid invasion in exploratory drilling[J]. SPE, 2004: 86497. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020416846598.html
    [13] Waldmann A T A, Leal R A F, Pires I J, et al. Minimizing drilling-fluid invasion in coring operations[C]//Anon. EuropeanFormation Damage Conference. [S. l. ]: [s. n. ], 2007.
    [14] Pang S, Sharma M. A model for predictin injectivity decline in water-injection wells[C]//Anon. SPE formation evaluation. [S. l. ]: SPE, 1997, 28489: 194-201.
    [15] Hussain F, Zeinijahromi A, Bedrikovetsky P, et al. An experimental study of improved oil recovery through fines-assisted waterflooding[J]. Journal of Petroleum Science & Engineering, 2013, 109: 187-197. http://www.onacademic.com/detail/journal_1000035969702710_d6da.html
    [16] Windarto W, Gunawan A Y, Sukarno P, et al. Modelling of formation damage due to mud filtrate invasion in a radial flow system[J]. Journal of Petroleum Science & Engineering, 2012, 100(6): 99-105. http://www.onacademic.com/detail/journal_1000036499966410_96d9.html
    [17] 鄢捷年. 钻井液工艺学[M]. 山东东营: 石油大学出版社, 2013.

    Yan J N. Drilling fluid technology[M]. Dongying Shandong: University of Petroleum Press, 2013(in Chinese).
    [18] 乌效鸣, 蔡记华, 胡郁乐. 钻井液与岩土工程浆材[M]. 武汉: 中国地质大学出版社, 2014.

    Wu X M, Cai J H, Hu Y L. Drilling fluid and geotechnical engineering grout[M]. Wuhan: China University of Geosciences Press, 2014(in Chinese).
    [19] Bharat B P. Drilling fluid additive and process therewith: US, 6124245[P]. 1998-10-07.
    [20] James E, Michael A. Shale stabilizing drilling fluids comprising calcium chloride and low molecular weight low charge cationicpolycrylamide copolymers: US, 6355600[P]. 1999-10-01.
    [21] 方俊伟, 苏晓明, 熊汉桥, 等. 塔中区块成膜封缝堵气钻井液体系[J]. 地质科技情报, 2019, 38(2): 297-302. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902036.htm

    Fang J W, Su X M, Xiong H Q, et al. Film-forming, seam-sealing and gas-blocking drilling fluid system in Tazhong block[J]. Geological Science and Technology Information, 2019, 38(2): 297-302(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902036.htm
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  962
  • PDF下载量:  289
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-01

目录

    /

    返回文章
    返回