Cenozoic tectonic evolution and dynamics of Turkana Depression, East African Rift
-
摘要: 作为威尔逊旋回萌芽阶段的典型陆内裂谷,东非裂谷是研究板块构造运动学和动力学的天然场所。新生代东非裂谷东支Turkana坳陷受前寒武系基底先存构造及中生代裂谷活动的影响,分析其演化及动力学机制,对进一步深入认识大陆裂谷演化过程具有重要的意义。基于低温热年代学、钻井及野外露头资料,结合地震资料解释和断层活动性分析,重新厘定了Turkana坳陷新生代裂谷演化时序,将新生代裂谷演化过程分为4个阶段,裂谷演化具有"南早北晚,先宽后窄,向东迁移"的特点。通过探讨裂谷发育的成因模式,认为新生代裂谷演化整体上受控于先存构造和地幔柱的联合作用,地幔活动迁移影响着火山及裂谷活动的迁移,并导致了裂谷发育模式和动力学机制的变化。Abstract: As a typical continental rift at the embryonic stage of the Wilson cycle, the East African Rift System (EARS) is a natural place for studying plate tectonic kinematics and dynamics. The Turkana area of the EARS is of special interest science, which has been influenced by pre-existing fabrics and Mesozoic rift activities. The evolution of EARS has important significance for understanding and perfecting the evolution process of continental rifts. Based on the collected low-temperature thermochronometer study results, drilling and field outcrop data, combined with seismic data, through comprehensive analysis of rift activity time and fault activity rate analysis, this study redefined the rift evolution sequence in Turkana area, and the Cenozoic rift activity in the study area can be divided into four stages of evolution. The characteristics of the evolution of the study area are summarized as follows: early stage rift began in the south and later stage in the north, first wide rift and later narrow rift, moving to the eastward. The rift evolution is generally controlled by the combined action of pre-existing fabrics and mantle plume activity. The migration of mantle activities not only affects the migration of volcanoes and rift activities, but also may change the development pattern.
-
图 3 Turkana坳陷断层分布图(a)、主要裂谷段边界断层活动时间厘定的热年代学分析图(b)和主要断层活动速率统计图(c)
图中红色圆点表示断层活动速率计算点, 其中S1代表South Lokichar凹陷断点1;K1代表Kerio凹陷断点1; Tu1代表Turkana凹陷断点1;NL1代表North Lokichar凹陷断点1;CB1代表Chew Bahir凹陷断点1
Figure 3. Distribution of faults in Turkana Depression(a), thermochronological analysis diagram for determining the time of fault activity at the boundary of main rift segments(b) and statistical diagram of main fault activity rate(c)
图 6 Turkana坳陷地幔活动对火山及裂谷活动影响示意图[39]
Figure 6. Schematic diagram of influence of mantle activity on volcanic and rift activities in Turkana Depression
表 1 Turkana坳陷主要凹陷地层充填层序
Table 1. Stratigraphic filling sequence of main sags in Turkana Depression
-
[1] Chorowicz J. The East African Rift System[J]. Journal of African Earth Sciences, 2005, 43(1/3): 379-410. [2] Morley C K. Stress re-orientation along zones of weak fabrics in rifts: An explanation for pure extension in 'oblique' rift segments?[J]. Earth and Planetary Science Letters, 2010, 297(3/4): 667-673. http://www.researchgate.net/profile/Christopher_Morley2/publication/223800202_Stress_re-orientation_along_zones_of_weak_fabrics_in_rifts_An_explanation_for_pure_extension_in_'oblique'_rift_segments/links/59b6204baca2728472dba2a3/Stress-re-orientation-along-zones-of-weak-fabrics-in-rifts-An-explanation-for-pure-extension-in-oblique-rift-segments.pdf [3] Boone S C, Kohn B P, Gleadow A J W, et al. Birth of the East African Rift System: Nucleation of magmatism and strain in the Turkana Depression[J]. Geology, 2019, 47(9): 886-890. doi: 10.1130/G46468.1 [4] Morley C K, Ngenoh D K, Ego J K. Introduction to the East African Rift System[J]. AAPG Studies in Geology# 44, 1999, 1: 1-18. http://archives.datapages.com/data/specpubs/study44/st44ch01/ch1.htm [5] Macgregor D. History of the development of the East African Rift System: A series of interpreted maps through time[J]. Journal of African Earth Sciences, 2015, 101: 232-252. doi: 10.1016/j.jafrearsci.2014.09.016 [6] Morley C K. Early syn-rift igneous dike patterns, northern Kenya Rift (Turkana, Kenya): Implications for local and regional stresses, tectonics, and magma-structure interactions[J]. Geosphere, 2020, 16(3): 890-918. doi: 10.1130/GES02107.1 [7] Simon B, Guillocheau F, Robin C, et al. Deformation and sedimentary evolution of the Lake Albert Rift (Uganda, East African Rift System)[J]. Marine and Petroleum Geology, 2017, 86: 17-37. doi: 10.1016/j.marpetgeo.2017.05.006 [8] Corti G. Evolution and characteristics of continental rifting: Analog modeling-inspired view and comparison with examples from the East African Rift System[J]. Tectonophysics, 2012, 522: 1-33. http://www.sciencedirect.com/science/article/pii/S0040195111002265 [9] Aanyu K, Koehn D. Influence of pre-existing fabrics on fault kinematics and rift geometry of interacting segments: Analogue models based on the Albertine Rift (Uganda), Western Branch-East African Rift System[J]. Journal of African Earth Sciences, 2011, 59(2/3): 168-184. http://www.sciencedirect.com/science/article/pii/S1464343X10001998 [10] Koptev A, Burov E, Calais E, et al. Contrasted continental rifting via plume-craton interaction: Applications to Central East African Rift[J]. Geoscience Frontiers, 2016, 7(2): 221-236. doi: 10.1016/j.gsf.2015.11.002 [11] Brune S. Rifts and rifted margins: A review of geodynamic processes and natural hazards[J]. Plate Boundaries and Natural Hazards, 2016, 219: 13-37. http://media.wiley.com/product_data/excerpt/78/11190539/1119053978-24.pdf [12] 郭曦泽, 侯贵廷. 东非裂谷系西支(湖区)油气资源潜力评价与分析[J]. 地球科学前沿, 2014, 4(2): 94-103.Guo X Z, Hou G T. The assessment and analysis of the potential of oil and gas resources in western branch (lakes) of the East African Rift[J]. Frontiers of Earth Science, 2014, 4(2): 94-103(in Chinese with English abstract). [13] Morley C K, Karanja F M, Wescott W A, et al. Geology and geophysics of the western Turkana Basins, Kenya[J]. AAPG Studies in Geology # 44, 1999, 2: 19-54. http://archives.datapages.com/data/specpubs/study44/st44ch02/ch2.htm [14] 贾屾, 邱春光, 湖滨, 等. 东非裂谷东支South Lokichar盆地油气成藏规律[J]. 海洋地质前沿, 2018, 34(4): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201804005.htmJia S, Qiu C G, Hu B, et al. Hydrocarbon accumulation in South Lokichar Basin, east branch of East Africa Rift System[J]. Marine Geology Frontiers, 2018, 34(4): 33-40(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201804005.htm [15] 胡滨, 贾屾, 邱春光, 等. 东非裂谷Kerio盆地石油地质特征与勘探潜力[J]. 中国地质调查, 2019, 6(1): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201901004.htmHu B, Jia S, Qiu C G, et al. Petroleum geological characteristics and exploration potential of Kerio Basin in East African Rift System[J]. Geological Survey of China, 2019, 6(1): 26-33(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201901004.htm [16] 胡滨, 张世鑫, 贾屾. 东非裂谷Kerio Valley盆地石油地质特征与勘探潜力[J]. 石油化工应用, 2018, 37(6): 110-113. doi: 10.3969/j.issn.1673-5285.2018.06.025Hu B, Zhang S X, Jia S. Petroleum geology and exploration potential of Kerio Valley Basin in East African Rift System[J]. Petrochemical Industry Aplication, 2018, 37(6): 110-113(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5285.2018.06.025 [17] 胡滨, 邱春光, 张世鑫, 等. 东非裂谷Turkana盆地石油地质特征与勘探潜力[J]. 四川地质学报, 2019, 39(1): 45-49. doi: 10.3969/j.issn.1006-0995.2019.01.010Hu B, Qiu C G, Zhang S X, et al. Petroleum geological features and prospecting potential of the Turkana Basin in the East African Rift System[J]. Acta Geologica Sichuan, 2019, 39(1): 45-49(in Chinese with English abstract). doi: 10.3969/j.issn.1006-0995.2019.01.010 [18] Boone S C, Kohn B P, Gleadow A J W, et al. Tectono-thermal evolution of a long-lived segment of the East African Rift System: Thermochronological insights from the North Lokichar Basin, Turkana, Kenya[J]. Tectonophysics, 2018, 744: 23-46. doi: 10.1016/j.tecto.2018.06.010 [19] Torres A V, Bande A, Sobel E R, et al. Cenozoic extension in the Kenya Rift from low-temperature thermochronology: Links to diachronous spatiotemporal evolution of rifting in East Africa[J]. Tectonics, 2015, 34(12): 2367-2386. doi: 10.1002/2015TC003949 [20] Boone S C, Seiler C, Kohn B P, et al. Influence of rift superposition onlithospheric response to East African Rift System extension: Lapur Range, Turkana, Kenya[J]. Tectonics, 2018, 37(1): 182-207. doi: 10.1002/2017TC004575 [21] Pik R, Marty B, Carignan J, et al. Timing of East African Rift development in southern Ethiopia: Implication for mantle plume activity and evolution of topography[J]. Geology, 2008, 36(2): 167-170. doi: 10.1130/G24233A.1 [22] 张燕, 田作基, 温志新, 等. 东非裂谷系东支油气成藏主控因素及勘探潜力[J]. 石油实验地质, 2017, 39(1): 79-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201701012.htmZhang Y, Tian Z J, Wen Z X, et al. Controlling factors for petroleum accumulation and exploration potential of the eastern branch of East African Rift System[J]. Petroleum Geology & Experiment, 2017, 39(1): 79-85(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201701012.htm [23] Boschetto H B, Brown F H, McDougall I. Stratigraphy of the Lothidok Range, northern Kenya, and K/Ar ages of its Miocene primates[J]. Journal of Human Evolution, 1992, 22(1): 47-71. doi: 10.1016/0047-2484(92)90029-9 [24] Abdelfettah Y, Tiercelin J J, Tarits P, et al. Subsurface structure and stratigraphy of the northwest end of the Turkana Basin, Northern Kenya Rift, as revealed by magnetotellurics and gravity joint inversion[J]. Journal of African Earth Sciences, 2016, 119: 120-138. doi: 10.1016/j.jafrearsci.2016.03.008 [25] Tiercelin J J, Potdevin J L, Thuo P K, et al. Stratigraphy, sedimentology and diagenetic evolution of the Lapur sandstone in northern Kenya: Implications for oil exploration of the Meso-Cenozoic Turkana Depression[J]. Journal of African Earth Sciences, 2012, 71: 43-79. http://www.sciencedirect.com/science/article/pii/S1464343X12001264 [26] Tiercelin J J, Potdevin J L, Morley C K, et al. Hydrocarbon potential of the Meso-Cenozoic Turkana Depression, northern Kenya. I. Reservoirs: Depositional environments, diagenetic characteristics, and source rock-reservoir relationships[J]. Marine and Petroleum Geology, 2004, 21(1): 41-62. doi: 10.1016/j.marpetgeo.2003.11.007 [27] 姜华, 王华, 刘军, 等. 珠江口盆地珠三坳陷神狐组-恩平组沉积时期南断裂活动性对沉积的控制作用[J]. 地质科技情报, 2009, 28(2): 49-53. doi: 10.3969/j.issn.1000-7849.2009.02.009Jiang H, Wang H, Liu J, et al. Activity of south fault of ZhuⅢ Depression and its controlling on sedimentation during Shenhu Formation to Enping Formation in Pearl River Mouth Basin[J]. Geological Science and Technology Information, 2009, 28(2): 49-53(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2009.02.009 [28] Phillips T B, Fazlikhani H, Gawthorpe R L, et al. The influence of structural inheritance and multiphase extension on rift development, the northern North Sea[J]. Tectonics, 2019, 38(12): 4099-4126. doi: 10.1029/2019TC005756 [29] Liu Y, Chen Q, Wang X, et al. Influence of normal fault growth and linkage on the evolution of a rift basin: A case from theGaoyou Depression of the Subei Basin, eastern China[J]. AAPG Bulletin, 2017, 101(2): 265-288. doi: 10.1306/06281615008 [30] Henstra G A, Kristensen T B, Rotevatn A, et al. How do pre-existing normal faults influence rift geometry? A comparison of adjacent basins with contrasting underlying structure on the Lofoten Margin, Norway[J]. Basin Research, 2019, 31(6): 1083-1097. doi: 10.1111/bre.12358 [31] 张连进, 黄家强, 罗强, 等. 川西北前陆双鱼石地区砂箱物理模拟及其油气地质意义[J]. 地质科技通报, 2021, 40(2): 156-166. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10126.shtmlZhang L J, Huang J Q, Luo Q, et al. Analogue experiments for the Shuangyushi area in the northwestern Sichuan Foreland Basin and their implications[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 156-166(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10126.shtml [32] 赖冬, 范彩伟, 罗强, 等. 砂箱物理模型浅表底辟构造研究进展[J]. 地质科技情报, 2019, 38(3): 103-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903010.htmLai D, Fan C W, Luo Q, et al. A review of tectonic sandbox modeling of diapir structure in shallow crust[J]. Geological Science and Technology Information, 2019, 38(3): 103-119(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903010.htm [33] Brune S, Williams S E, Butterworth N P, et al. Abrupt plate accelerations shape rifted continental margins[J]. Nature, 2016, 536: 201-204. doi: 10.1038/nature18319 [34] Ebinger C. Continental break-up: The East African perspective[J]. Astronomy & Geophysics, 2005, 46(2): 16-21. http://astrogeo.oxfordjournals.org/content/46/2/2.16.full.pdf [35] Koptev A, Burov E, Gerya T, et al. Plume-induced continental rifting and break-up in ultra-slow extension context: Insights from 3D numerical modeling[J]. Tectonophysics, 2018, 746: 121-137. doi: 10.1016/j.tecto.2017.03.025 [36] Corti G, Calignano E, Petit C, et al. Controls of lithospheric structure and plate kinematics on rift architecture and evolution: An experimental modeling of the Baikal rift[J]. Tectonics, 2011, 30(3): 1-16. http://carole.petit-mariani.pagesperso-orange.fr/mapage/Corti&alTectonics2011.pdf [37] Brune S, Corti G, Ranalli G. Controls of inherited lithospheric heterogeneity on rift linkage: Numerical and analog models of interaction between the Kenyan and Ethiopian rifts across the Turkana Depression[J]. Tectonics, 2017, 36(9): 1767-1786. doi: 10.1002/2017TC004739 [38] Morley C K, Wescott W A, Stone D M, et al. Tectonic evolution of the northern Kenyan Rift[J]. Journal of the Geological Society, 1992, 149(3): 333-348. doi: 10.1144/gsjgs.149.3.0333 [39] Morley C K. Developments in the structural geology of rifts over the last decade and their impact on hydrocarbon exploration[J]. Geological Society, London, Special Publications, 1995, 80(1): 1-32. doi: 10.1144/GSL.SP.1995.080.01.01 [40] Rosendahl B R. Architecture of continental rifts with special reference to East Africa[J]. Annual Review of Earth and Planetary Sciences, 1987, 15: 445. doi: 10.1146/annurev.ea.15.050187.002305 [41] Mugisha F, Ebinger C J, Strecker M, et al. Two-stage rifting in the Kenya rift: Implications for half-graben models[J]. Tectonophysics, 1997, 278(1/4): 63-81. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0040195197000954&originContentFamily=serial&_origin=article&_ts=1483828415&md5=928ff35511039947dd7f5026eb6f5714