留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沥青质沉积对原油渗流特征的影响

李新文 张国威

李新文, 张国威. 沥青质沉积对原油渗流特征的影响[J]. 地质科技通报, 2021, 40(6): 15-23. doi: 10.19509/j.cnki.dzkq.2021.0602
引用本文: 李新文, 张国威. 沥青质沉积对原油渗流特征的影响[J]. 地质科技通报, 2021, 40(6): 15-23. doi: 10.19509/j.cnki.dzkq.2021.0602
Li Xinwen, Zhang Guowei. Influence of asphaltene deposition on oil seepage characteristics[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 15-23. doi: 10.19509/j.cnki.dzkq.2021.0602
Citation: Li Xinwen, Zhang Guowei. Influence of asphaltene deposition on oil seepage characteristics[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 15-23. doi: 10.19509/j.cnki.dzkq.2021.0602

沥青质沉积对原油渗流特征的影响

doi: 10.19509/j.cnki.dzkq.2021.0602
基金项目: 

国家科技重大专项"鄂尔多斯盆地致密低渗油气藏注气提高采收率技术" 2016ZX05048

详细信息
    作者简介:

    李新文(1969-), 男, 高级工程师, 主要从事低渗至特低渗透油藏经济有效开发等方面的研究工作。E-mail: 2817434472@qq.com

    通讯作者:

    张国威(1982-), 男, 讲师, 主要从事油气田优化开发和数值模拟教学与研究工作。E-mail: 290439024@qq.com

  • 中图分类号: TE14

Influence of asphaltene deposition on oil seepage characteristics

  • 摘要: 沥青质沉积不仅会伤害储层物性还会对流体饱和度分布和渗流特征产生影响。通过开展不同开发方式下的长岩心驱替实验,分别测定了有或无沥青质沉积影响下的油水、油气和三相相对渗透率曲线,研究了沥青质沉积对原油相对渗透率和岩石润湿性的影响。研究结果表明,沥青质沉积导致水驱、CO2非混相驱和水气交替(WAG)驱的采收率分别降低了12.2%,5.9%,15.3%。并会引起驱替压差上升,岩石润湿性向亲油性转变,加速水或气突破时间。水驱中沥青质沉淀会使油水两相共渗区左移,含水饱和度对油相相对渗透率的影响增大。CO2非混相驱中沥青质沉淀对气相渗透率影响较小,而油相渗透率更容易受到含气饱和度变化的影响。在三相渗流中沥青质沉淀会降低油相渗透率,加快油相相对渗透率的下降速度,增大残余油饱和度,减弱WAG驱效果。在注入水中添加JCF-1非离子表面活性剂后,能够降低驱替压差,延缓水或气突破时间,增大油相相对渗透率,降低残余油饱和度,弥补沥青质沉积产生的伤害。研究成果为富含沥青质油藏的高效开发提供了依据。

     

  • 图 1  沥青质沉积对水驱压差和采收率的影响

    Figure 1.  Effect of asphaltene deposition on water drive pressure difference and oil recovery

    图 2  沥青质沉积对注CO2驱替压差和采收率的影响

    Figure 2.  Effect of asphaltene deposition on CO2 drive pressure difference and oil recovery

    图 3  沥青质沉积对水气交替驱替压差的影响

    Figure 3.  Effect of asphaltene deposition on WAG flooding pressure difference and oil recovery

    图 4  水驱过程中沥青质沉淀对油水相对渗透率曲线的影响

    Figure 4.  Effect of asphaltene precipitation on oil-water relative permeability curve during water flooding

    图 5  CO2驱过程中沥青质沉淀对油气相对渗透率曲线的影响

    Figure 5.  Effect of asphaltene precipitation on oil-water relative permeability curve during CO2 flooding

    图 6  WAG驱过程中沥青质沉淀对油相相对渗透率的影响

    Figure 6.  Effect of asphaltene precipitation on oil-water relative permeability curve during WAG flooding

    图 7  3#岩心润湿接触角的变化

    a.原始状态下的接触角33.5°;b.地层水-CO2交替驱含沥青质地层原油后的接触角108.7°;c.0.3% JCF-1溶液-CO2交替驱含沥青质地层原油后的接触角49.3°

    Figure 7.  Variation of wetting contact angle of core 3#

    图 8  2#岩心CO2驱沥青质沉积后SEM图及红框处矿物能谱元素分析

    Figure 8.  SEM and EDS analysis of core 2# after asphaltene deposition

    图 9  3#岩心地层水-CO2交替驱沥青质沉积后SEM图及红框处矿物能谱元素分析

    Figure 9.  SEM and EDS analysis of core 3# after formation water-CO2 asphaltene deposition

    表  1  实验岩心基本物性及实验类型

    Table  1.   Basic physical properties experimental types of experimental cores

    长岩心编号 长度/cm 直径/cm 孔隙度/% 气测渗透率/10-3μm2 孔隙体积/cm3 润湿接触角/(°) wB/% 实验类型
    石英 长石 方解石 白云石 黏土
    1 15.21 2.52 20.18 208.25 34.72 38.2 52 28 2 8 10 ①注地层水驱不含沥青质原油;②注地层水驱含沥青质原油;③注0.3% JCF-1溶液驱替含沥青质原油
    2 15.16 2.51 21.36 240.45 36.24 37.3 54 25 1 7 13 ①注CO2驱不含沥青质原油;②注CO2驱含沥青质原油
    3 15.08 2.52 20.84 226.11 33.68 33.5 59 21 2 7 11 ①地层水-CO2交替驱不含沥青质原油;②地层水-CO2交替驱含沥青质原油;③0.3% JCF-1溶液-CO2交替驱含沥青质原油
    下载: 导出CSV

    表  2  复配原油基础物性参数

    Table  2.   Basic physical properties of compound crude oil

    参数类型 地层原油
    (含沥青质)
    地层原油
    (去除沥青质)
    溶解气油比/(m3·m-3) 37.25 41.36
    泡点压力/MPa 6.54 6.86
    脱气原油密度/(g·cm-3) 0.841 1 0.839 5
    地层原油密度/(g·cm-3) 0.762 6 0.756 1
    地层原油黏度/(mPa·s-1) 5.72 5.48
    地层原油体积系数 1.1932 1.1985
    地层原油平均相对分子量 102.5 96.4
    w(沥青质)/% 3.64 0.78
    地层原油储层条件: 15.8 MPa, 61℃; 脱气原油储层条件: 0.1 MPa, 24℃
    下载: 导出CSV
  • [1] 王志坚. 深层-超深层异常高压油藏工艺技术对策[J]. 油气地质与采收率, 2020, 27(5): 33-41. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202005016.htm

    Wang Z J. Technological strategies for deep and ultra-deep reservoirs with abnormally high pressure[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 33-41(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202005016.htm
    [2] 冯小哲, 祝海华. 鄂尔多斯盆地苏里格地区下石盒子组致密砂岩储层微观孔隙结构及分形特征[J]. 地质科技情报, 2019, 38(3): 147-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903015.htm

    Feng X Z, Zhu H H. Micro-pore structure and fractal characteristics of the Xiashihezi Formation tight sandstone reservoirs in Sulige Area, Ordos Basin[J]. Geological Science and Technology Information, 2019, 38(3): 147-156(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903015.htm
    [3] 狄伟. 注CO2对超低渗储层的渗透性伤害研究[J]. 钻采工艺, 2020, 43(2): 53-62. doi: 10.3969/J.ISSN.1006-768X.2020.02.14

    Di W. Study on the damage of CO2 injection to permeability of ultra-low permeability reservoirs[J]. Drilling & Production Technology, 2020, 43(2): 53-62(in Chinese with English abstract). doi: 10.3969/J.ISSN.1006-768X.2020.02.14
    [4] 陈龙龙, 余华贵, 汤瑞佳, 等. 沥青质沉积对轻质油藏CO2驱的影响[J]. 油田化学, 2017, 34(1): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX201701019.htm

    Cheng L L, Yu H G, Tang R J, et al. Effect of asphalt deposition on CO2 flooding in light oil reservoir[J]. Oilfield Chemistry, 2017, 34(1): 87-93(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX201701019.htm
    [5] Wei B, Zhang X, Liu J, et al. Supercritical CO2-EOR in an asphaltenic tight sandstone formation and the changes of rock petrophysical properties induced by asphaltene precipitation[J]. Journal of Petroleum Science and Engineering, 2020, 184(2): 376-385.
    [6] Minssieux L. Core damage from crude asphaltene deposition[C]//Houston, Texas, USA: Society of Petroleum Engineers, 1997.
    [7] Mendoza J, Angle L, Arguelles F J, et al. Asphaltene-induced precipitation and deposition during pressure depletion on a porous medium: An experimental investigation and modeling approach[J]. Energy & Fuels, 2009, 23(11): 5611-5625. doi: 10.1021/ef9006142
    [8] Papadimitriou N I, Romanos G E, Charalambopou G C, et al. Experimental investigation of asphaltene deposition mechanism during oil flow in core samples[J]. Journal of Petroleum Science and Engineering, 2007, 57(3/4): 281-293. http://www.onacademic.com/detail/journal_1000034100770110_0ef0.html
    [9] 雷浩. 低渗储层CO2驱油过程中沉淀规律及防治对策研究[D]. 北京: 中国石油大学(北京), 2017.

    Lei H. Deposition mechanisms and reservoir protection countermeasures of a low-permeability formation in CO2 flooding process[D]. Beijing: China University of Petroleum (Beijing), 2017(in Chinese with English abstract).
    [10] Ghosh B, Sulemana N, Banat F, et al. Ionic liquid in stabilizing asphaltenes during miscible CO2 injection in high pressure oil reservoir[J]. Journal of Petroleum Science and Engineering, 2019, 180: 1046-1057. doi: 10.1016/j.petrol.2019.06.017
    [11] 王琛, 李天太, 高辉, 等. CO2驱沥青质沉积量对致密砂岩油藏采收率的影响机理[J]. 油气地质与采收率, 2018, 25(3): 107-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201803016.htm

    Wang C, Li T T, Gao H, et al. Study on influence mechanism of asphaltene precipitation on oil recovery during CO2 flooding in tight sandstone reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(3): 107-111(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201803016.htm
    [12] Qian K, Yang S L, Dou H E, et al. Experimental investigation on microscopic residual oil distribution during CO2 huff-and-puff process in tight oil reservoirs[J]. Fuel, 2018, 11(3): 28-43. http://smartsearch.nstl.gov.cn/paper_detail.html?id=3cd7193ae57f050d47d9f1df0dd99ab5
    [13] Lei H, Yang S L, Zu L H, et al. Oil recovery performance and CO2 storage potential of CO2 water-alternating-gas injection after continuous CO2 injection in a multilayer formation[J]. Energy & Fuels, 2016, 30(11): 8922-8931. doi: 10.1021/acs.energyfuels.6b01307
    [14] 乞照, 安锴胜, 王筱晔, 等. CO2驱沥青质沉积对致密储层的伤害机理: 以鄂尔多斯盆地延长组长8储层为例[J]. 断块油气田, 2020, 27(3): 350-354. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202003017.htm

    Qi Z, An K S, Wang X Y, et al. Damage mechanism of asphaltene deposition to tight reservoir during CO2 flooding: taking Chang 8 reservoir of Yanchang Formation in Ordos Basin as an example[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 350-354(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202003017.htm
    [15] 郑希谭, 孙雯悦, 李实, 等. GB/T 26981-2011油气藏流体物性分析方法[S]. 北京: 石油工业出版社, 2010.

    Zheng X T, Sun W Y, Li S, et al. GB/T 26981-2011 Test method for reservoir fluid physical properties[S]. Beijing: Petroleum Industry Press, 2010(in Chinese).
    [16] 李奋, 刘丽, 马炳杰, 等. SY/T5153-2017油藏岩石润湿性测定方法[S]. 北京: 石油工业出版社, 2017.

    Li F, Liu L, Ma B J, et al. SY/T5153-2017 Test method of reservoir rock wettability[S]. Beijing: Petroleum Industry Press, 2017(in Chinese).
    [17] Hosseini E. Experimental investigation of effect of asphaltene deposition on oil relative permeability, rock wettability alteration, and recovery in WAG process[J]. Petroleum Science and Technology, 2019, 20(37): 2150-2159
    [18] 欧阳思琪, 孙卫, 吴育平, 等. 低渗-特低渗油藏渗流特征及影响因素: 以鄂尔多斯盆地安塞油田侯市-杏河地区长6油藏为例[J]. 地质科技情报, 2019, 38(2): 199-207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902023.htm

    Ouyang S Q, Sun W, Wu Y P, et al. Seepage characteristics and influencing factors of low permeability-ultra low permeability reservoir: A case of Chang 6 reservoir in Houshi-Xinghe Area of Ansai Oilfield in Ordos Basin[J]. Geological Science and Technology Information, 2019, 38(2): 199-207(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902023.htm
    [19] 胡伟, 吕成远, 王锐, 等. 水驱转CO2混相驱渗流机理及传质特征[J]. 石油学报, 2018, 39(2): 201-209. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201802008.htm

    Hu W, Lü C Y, Wang R, et al. Porous flow mechanism and mass transfer characteristics of CO2 miscible flooding after waterflooding[J]. Acta Petrolei Sinica, 2018, 39(2): 201-209(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201802008.htm
    [20] Wu Y, Chen W, Dai C, et al. Reducing surfactant adsorption on rock by silica nanoparticles for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2017, 153(2): 283-287. http://www.onacademic.com/detail/journal_1000039876308010_de03.html
    [21] 唐梅荣, 张同伍, 白晓虎, 等. 孔喉结构对CO2驱储层伤害程度的影响[J]. 岩性油气藏, 2019, 31(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201903013.htm

    Tang M R, Zhang T W, Bai X H, et al. Influence of pore throat structure on reservoir damage with CO2 flooding[J]. Lithologic Reservoirs, 2019, 31(3): 1-8(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201903013.htm
    [22] 吴润楠. 致密油藏注CO2沥青质沉积及储层物性变化规律研究[D]. 成都: 西南石油大学, 2019.

    Wu R N. The study on a sphaltene precipitation and reservoir physical properties damage during CO2 injection in tight oil reservoirs[D]. Chengdu: Southwest Petroleum University, 2019(in Chinese).
    [23] Fakher S, Ahdaya M, Elturki M, et al. Critical review of asphaltene properties and factors impacting its stability in crude oil[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(5): 1-18. doi: 10.1007/s13202-019-00811-5
    [24] 王千, 杨胜来, 拜杰, 等. 非均质多层储层中CO2驱替方式对驱油效果及储层伤害的影响[J]. 石油学报, 2020, 41(7): 875-884. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202007011.htm

    Wang Q, Yang S L, Bai J, et al. Influence of CO2 flooding mode on oil displacement effect and reservoir damage in heterogeneous multi-layer reservoirs[J]. Acta Petrolei Sinica, 2020, 41(7): 875-884(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202007011.htm
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  685
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-17

目录

    /

    返回文章
    返回