Effect factors analysis and characteristic of freeze-thaw deformation of fracture rock
-
摘要: 高寒、高海拔地区由于反复冻融导致的岩体变形破坏,对区内工程建设有重大影响。为研究不同裂隙条件下岩体循环冻融特性,在汶马高速沿线选择具有代表性的千枚岩和砂岩,制备了不同裂隙条件(长度、张开度、裂隙组数)试样,在干燥和饱水两种状态下分别进行大温差(-20℃到20℃)循环冻融(50次)试验。试验揭示了饱水裂隙岩样冻融变形过程:冻缩→冻胀→冻缩(冻结阶段)→融胀→融缩→融胀(融化阶段),干燥裂隙岩样冻融变形过程:冻缩(冻结阶段)→融胀(融化阶段)。进一步,选择冻胀量εd为指标,分析了两类岩样冻融循环次数与εd的关系,揭示了裂隙长度、宽度和组数对εr的影响规律;选择残余变形量εr为指标,揭示了千枚岩和砂岩试样在饱水条件下εr随εd的增加规律,获得了εd与εr间的定量关系;分析了干燥和饱水试样单轴抗压强度随冻融循环次数增加而减小规律,确定了冻融次数与试样劣化间的线性关系。最后,初步讨论了饱水条件、岩性和裂隙条件对岩体冻融循环变形的影响机制。Abstract: In the cold and high-altitude regions of Sichuan Provence, the rock failure caused by freeze-thaw deformation has a significant impact on projects. In order to study the cyclic freeze-thaw characteristics of rock mass under different fracture conditions, the phyllite and sandstone were taken from this area. The rock samples with different joint lengths, opening, number of joints were conducted with 50 cycles of freeze-thaw tests under ±20℃. The test results showed that the saturated rock had process of freeze contract→freeze expand→freeze contract→thaw expand→thaw contract→thaw expand. The dry rock had process of freeze contract→melt expansion. The relationship between freeze-thaw cycle times and εd was studied. The length of joint, opening and number of joints had an influence on freeze-thaw deformation of dry sample. Select the residual deformation εr as an index to study the increasing of εr with increasing of εd for phyllite and sandstone samples under the water saturation conditions. The relationship between εr and εd had been obtained. The decreasing of uniaxial compressive strength of dry and saturated samples with increasing of the number of freeze-thaw cycles was analyzed. The linear relationship between freeze-thaw times and sample deterioration was determined. Finally, the influence mechanisms of water saturation condition, lithology and fracture condition on freeze-thaw cyclic deformation of rock mass were discussed.
-
Key words:
- fractured rock mass /
- freezing-thaw cycle /
- freeze expanding value /
- residual deformation
-
表 1 岩体物理参数
Table 1. Physical parameters of rock mass
试样类别 密度ρB/(g·cm-3) 孔隙率n/% 吸水率ωa/% 单轴抗压强度/MPa 超声波波速/(m·s-1) 干燥 饱和 干燥 饱和 千枚岩 2.77 0.50 0.18 35.2 18.8 5 608 5 902 砂岩 2.70 1.22 0.45 88.2 76.9 4 581 5 131 表 2 试验方案
Table 2. Test program
类别 裂隙试样 裂隙 干燥 饱水 长度/cm 宽度/mm 数量/条 千枚岩 S1-1 S1-2 1/4h 3 1 S1-3 S1-4 1/2h 3 1 S1-5 S1-6 3/4h 3 1 S1-7 S1-8 1/2h 3 2 S1-9 S1-10 1/2h 6 1 砂岩 S2-1 S2-2 1/4h 3 1 S2-3 S2-4 1/2h 3 1 S2-5 S2-6 3/4h 3 1 S2-7 S2-8 1/2h 3 2 S2-9 S2-10 1/2h 6 1 注:h为试样高度 表 3 饱水裂隙试样εr
Table 3. Results of εr of situated sample
试样 冻融循环次数/次 残余微应变εr/με S-2(1/4 h) S-4(1/2 h) S-6(3/4 h) S-8(双裂隙) S-10(6 mm) S1/千枚岩 1 20 28 40 80 46 10 22 37 56 106 69 20 31 49 81 139 92 30 43 61 98 175 118 40 59 82 119 202 141 50 71 102 145 228 169 S2/砂岩 1 30 62 66 118 98 10 37 71 94 149 129 20 60 90 125 196 156 30 72 110 167 235 200 40 91 123 210 276 244 50 105 139 253 308 303 表 4 干燥裂隙试样εr
Table 4. Results of εr of situated sample
试样 冻融循环次数/次 残余微应变εr/με S-1(1/ 4h) S-3(1/2 h) S-5(3/4 h) S-7(双裂隙) S-9(6 mm) S1/千枚岩 1 12 14 17 37 22 10 16 20 26 58 38 20 21 29 34 80 55 30 29 38 41 98 75 40 39 61 64 125 98 50 51 60 68 161 125 S2/砂岩 1 -96 -99 -102 -120 -119 10 -118 -125 -130 -152 -138 20 -146 -160 -162 -187 -167 30 -169 -182 -191 -209 -198 40 -188 -196 -202 -211 -206 50 -191 -200 -205 -213 -209 -
[1] 李杰林. 基于核磁共振技术的寒区岩体冻融损伤机理实验研究[D]. 长沙: 中南大学, 2012.Li J L. Experiment study on deterioration mechanism of rock under the conditions of freezing-thawing cycles in cold regions based on NMR technology[D]. Changsha: Central South University, 2012(in Chinese with English abstract). [2] Hall K. Evidence for freeze-thaw events and their implications for rock weathering in northern Canada: Ⅱ. The temperature at which water freezes in rock[J]. Earth Surface Processes and Landforms, 2007, 32: 242-259. [3] Hall K. A laboratory simulation of rock breakdown due to freeze-thaw in a maritime Antarctic environment[J]. Earth Surface Processes and Landforms, 1988, 13(4): 369-382. doi: 10.1002/esp.3290130408 [4] Hall K, Marie F A. Rock thermal data at the grain scale: Applicability to granular disintegration in cold environments[J]. Earth Surface Processes and Landforms, 2003, 28(8): 823-836. doi: 10.1002/esp.494 [5] 刘华, 牛富俊, 徐志英, 等. 循环冻融条件下安山岩和花岗岩的物理力学特性试验研究[J]. 冰川冻土, 2011, 33(3): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201103015.htmLiu H, Niu F J, Xu Z Y, et al. Acoustic experiment study of two types of rock from the Tibetan Plateau under the condition of freeze-thaw cycles[J]. Journal of Glaciology and Geocryology, 2011, 33(3): 557-563(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201103015.htm [6] 俞缙, 傅国锋, 陈旭, 等. 冻融循环后砂岩三轴卸围压力学特性试验研究[J]. 岩体力学与工程学报, 2015, 34(10): 2001-2009. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201510007.htmYu J, Fu G F, Chen X, et al. Experimental study on mechanical properties of sandstone under triaxial unloading confining pressure after freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 2001-2009(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201510007.htm [7] 吴刚, 何国梁, 张磊, 等. 大理岩循环冻融试验研究[J]. 岩体力学与工程学报, 2006, 25(增刊1): 2930-2938. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1049.htmWu G, He G L, Zhang L, et al. Experimental study on cycles of freezing-thawing marble[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 2930-2938(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1049.htm [8] 刘成禹, 何满潮, 王树仁, 等. 花岗岩低温冻融损伤特性的实验研究[J]. 湖南科技大学学报: 自然科学版, 2005, 20(1): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200501009.htmLiu C Y, He M C, Wang S R, et al. Experimental investigation freeze-thawing damage characteristics of granite at low temperature[J]. Journal of Hunan University of Science & Technology: Natural Science Edition, 2005, 20(1): 37-40(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200501009.htm [9] 何国梁, 张磊, 吴刚. 循环冻融条件下岩石物理特性的试验研究[J]. 岩土力学, 2004, 25(增刊2): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2004S200A.htmHe G L, Zhang L, Wu G. Test study on physical characteristics of rock under freezing-thawing cycles[J]. Rock and Soil Mechanics, 2004, 25(S2): 52-56(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2004S200A.htm [10] Yamabe T, Neaupane K M. Determination of some thermo-mechanical properties of Sirahama sandstone under subzero temperature condition[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 1029-1034. doi: 10.1016/S1365-1609(01)00067-3 [11] 朱立平, Whalley W B, 王家澄. 寒冻条件下花岗岩小块体的风化模拟实验及其分析[J]. 冰川冻土, 1997, 19(4): 312-320. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT704.004.htmZhu L P, Whalley W B, Wang J C. A simulated weathering experiment of small free granite blocks under freeze-thaw conditions[J]. Journal of Glaciology and Geocryology, 1997, 19(4): 312-320(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT704.004.htm [12] 路亚妮. 裂隙岩体冻融损伤力学特性试验及破坏机制研究[D]. 武汉: 武汉理工大学, 2013.Lu Y L. Study on mechanics characteristic of damage due to freeze action in fractured rock masses and failure mechanism[D] Wuhan: Wuhan University of Technology, 2013(in Chinese with English abstract). [13] 裴向军, 蒙明辉, 袁进科, 等. 干燥及饱水状态下裂隙岩石冻融特征研究[J]. 岩土力学, 2017, 38(7): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707020.htmPei X J, Meng M H, Yuan J K, et al. Research on rockmass fracture freezing-thawing character under wet or dry condition[J]. Rock and Soil Mechanics, 2017, 38(7): 1-8(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707020.htm [14] 邓红卫, 田维刚, 周科平, 等. 2001-2012年岩体冻融力学研究进展[J]. 科技导报, 2013, 31(24): 74-79. doi: 10.3981/j.issn.1000-7857.2013.24.012Deng H W, Tian W G, Zhou K P, et al. Process in freezing-thawing rock mechanics during the period of 2001 to 2012[J]. Science and Technology Review, 2013, 31(24): 74-79(in Chinese with English abstract). doi: 10.3981/j.issn.1000-7857.2013.24.012 [15] 张全胜, 杨更社, 任建喜. 岩体损伤变量及本构方程的新探讨[J]. 岩体力学与工程学报, 2003, 22(1): 30-34.Zhang Q S, Yang G S, Ren J X. New study of damage variable and constitutive equation of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 30-34(in Chinese with English abstract). [16] 张慧梅, 杨更社. 冻融与荷载耦合作用下岩体损伤模型的研究[J]. 岩体力学与工程学报, 2010, 29(3): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201311018.htmZhang H M, Yang G S. Research on damage model of rock under couplingaction of freeze-thaw and load[J]. Chinese Journal of Rock Mechanicsand Engineering, 2010, 29(3): 471-476(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201311018.htm [17] 夏才初, 黄继辉, 韩常领, 等. 寒区隧道岩体冻胀率的取值方法和冻胀敏感性分级[J]. 岩体力学与工程学报, 2013, 32(9): 1876-1885. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201309022.htmXia C C, Huang J H, Han C L, et al. Methods of frost-heave ratio evalution and classification of frost-heave susceptibility of tunnel surrounding rock in cold regions[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1876-1885(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201309022.htm [18] 北川修三, 川上義輝. 基于冻溶试验的岩石冻胀性判定[J]. 应用地质, 1986, 27(2): 11-20.Kitagawa Shuzo, Kawakami Yoshiteru. Judgment of frost heaving of rocks by freezing test[J]. Journal of the Japan Society of Engineering Geology, 1986, 27(2): 11-20 (in Chinese with English abstract). [19] Tharp T M. Conditions for crack propagation by frost wedging[J]. Geological Society of America Bulletin, 1987, 99(1): 94-102. doi: 10.1130/0016-7606(1987)99<94:CFCPBF>2.0.CO;2 [20] Kevin H. Freeze-thaw simulation on quartzmicaschist and their implications for weathering studies on Signy Island, Antarctica[J]. British Antarctic Survey, 1986, 73(1): 19-30. http://www.researchgate.net/publication/294177356_Freeze-thaw_simulations_on_quartz-micaschist_and_their_implications_for_weathering_studies_on_Signy_Island_Antarctica [21] Mcgreevy J P, Whalley W B. Rock moisture content and frost weathering under natural and experimental conditions: A comparative discussion[J]. Arctic and Alpine Research, 1985, 17(3): 337-346. doi: 10.2307/1551022 [22] Style R W, Peppin S S L. The kinetics of ice-lens growth in porous media[J]. Journal of Fluid Mechanics, 2012, 692: 482-498. doi: 10.1017/jfm.2011.545 [23] Hallet B, walder J S, Stubbs C W. Weathering by segregationice growth in microcracks at sustained subzero temperatures: Verification from an experimental study using acoustic emissions[J]. Permafrost and Periglacial Processes, 1991, 2(4): 283-300. doi: 10.1002/ppp.3430020404 [24] Nakamura D, Goto T, ITo Y, et al. Basic study on the frost heave pressure of rocks-dependence of the location of frost heave on the strength of the rock[J]. Journal of MMIJ, 2011, 127(9): 558-564. doi: 10.2473/journalofmmij.127.558 [25] 康永水. 裂隙岩体冻融损伤力学特性及多场耦合过程研究[J]. 岩体力学与工程学报, 2012, 31(9): 220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201209024.htmKang Y S. Study on mechanical characteristics and multi field coupling process of freeze thaw damage of fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 220(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201209024.htm [26] 徐光苗. 寒区岩体低温、冻融损伤力学特性及多场耦合研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2006.Xu G M. Study on mechanical characteristics and multi-physical coupling problems of rock at low temperatures[D]. Wuhan: Wuhan Institute of Geotechnical Mechanics, Chinese Academy of Sciences, 2006(in Chinese). [27] Hori M. Micromechanical analysis of deterioration due to freezing and thawing in porous brittle materials[J]. International Journal of Engineering Science, 1998, 36(4): 511-522. doi: 10.1016/S0020-7225(97)00080-3 [28] 杨更社, 蒲毅彬. 冻融循环条件下岩体损伤扩展研究初探[J]. 煤炭学报, 2002, 27(4): 357-360. doi: 10.3321/j.issn:0253-9993.2002.04.005Yang G S, Pu Y B. Initial discussion on the damage propagation of rock under the frost and thaw condition[J]. Journal of China Coal Society, 2002, 27(4): 357-360(in Chinese with English abstract). doi: 10.3321/j.issn:0253-9993.2002.04.005 [29] 周盛涛, 方文, 蒋楠, 等. 冻融循环作用下砂岩单轴压缩破坏断口特征分形研究[J]. 地质科技通报, 2020, 39(5): 61-68. doi: 10.19509/j.cnki.dzkq.2020.0518Zhou S T, Fang W, Jiang N, et al. Fractal geometry study on uniaxial compression fracture characteristics of sandstone subjected to freeze-thaw cycles[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 61-68(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0518 [30] 杨龙, 史小勇, 陈钱, 等. 循环荷载作用下片麻岩劣化损伤机理与规律试验[J]. 地质科技通报, 2020, 39(5): 55-60. doi: 10.19509/j.cnki.dzkq.2020.0517Yang L, Shi X Y, Chen Q, et al. Mechanism and laws of deterioration and damage of gneisses under cyclic loading[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 55-60(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0517