留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

裂隙岩体循环冻融变形特征及影响因素分析

崔圣华 杨晴雯 芮雪莲 张御阳

崔圣华, 杨晴雯, 芮雪莲, 张御阳. 裂隙岩体循环冻融变形特征及影响因素分析[J]. 地质科技通报, 2021, 40(6): 205-215. doi: 10.19509/j.cnki.dzkq.2021.0620
引用本文: 崔圣华, 杨晴雯, 芮雪莲, 张御阳. 裂隙岩体循环冻融变形特征及影响因素分析[J]. 地质科技通报, 2021, 40(6): 205-215. doi: 10.19509/j.cnki.dzkq.2021.0620
Cui Shenghua, Yang Qingwen, Rui Xuelian, Zhang Yuyang. Effect factors analysis and characteristic of freeze-thaw deformation of fracture rock[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 205-215. doi: 10.19509/j.cnki.dzkq.2021.0620
Citation: Cui Shenghua, Yang Qingwen, Rui Xuelian, Zhang Yuyang. Effect factors analysis and characteristic of freeze-thaw deformation of fracture rock[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 205-215. doi: 10.19509/j.cnki.dzkq.2021.0620

裂隙岩体循环冻融变形特征及影响因素分析

doi: 10.19509/j.cnki.dzkq.2021.0620
基金项目: 

国家创新研究群体科学基金项目 41521002

国家自然科学基金项目 41907254

国家自然科学基金项目 41931296

详细信息
    作者简介:

    崔圣华(1989-), 男, 讲师, 主要从事环境保护方面的教学与研究工作。E-mail: shenghua2008126@126.com

    通讯作者:

    杨晴雯(1991-), 女, 讲师, 主要从事地质环境保护方面的教学与研究工作。E-mail: yangqingwen1991@outlook.com

  • 中图分类号: P583

Effect factors analysis and characteristic of freeze-thaw deformation of fracture rock

  • 摘要: 高寒、高海拔地区由于反复冻融导致的岩体变形破坏,对区内工程建设有重大影响。为研究不同裂隙条件下岩体循环冻融特性,在汶马高速沿线选择具有代表性的千枚岩和砂岩,制备了不同裂隙条件(长度、张开度、裂隙组数)试样,在干燥和饱水两种状态下分别进行大温差(-20℃到20℃)循环冻融(50次)试验。试验揭示了饱水裂隙岩样冻融变形过程:冻缩→冻胀→冻缩(冻结阶段)→融胀→融缩→融胀(融化阶段),干燥裂隙岩样冻融变形过程:冻缩(冻结阶段)→融胀(融化阶段)。进一步,选择冻胀量εd为指标,分析了两类岩样冻融循环次数与εd的关系,揭示了裂隙长度、宽度和组数对εr的影响规律;选择残余变形量εr为指标,揭示了千枚岩和砂岩试样在饱水条件下εr随εd的增加规律,获得了εd与εr间的定量关系;分析了干燥和饱水试样单轴抗压强度随冻融循环次数增加而减小规律,确定了冻融次数与试样劣化间的线性关系。最后,初步讨论了饱水条件、岩性和裂隙条件对岩体冻融循环变形的影响机制。

     

  • 图 1  部分试样照片

    Figure 1.  Pictures of samples

    图 2  单冻融周期温度控制曲线

    Figure 2.  Controlling curve of one freezing-thawing cycle

    图 3  单周期冻融变形过程

    Figure 3.  Deformation processes in one freezing-thawing cycle

    图 4  冻胀量及残余应变量

    Figure 4.  Primates of εd and εr

    图 5  饱水裂隙试样冻融循环次数-εd关系曲线

    Figure 5.  Relationship of freezing-thawing cycle with εd of the saturated fracture samples

    图 6  饱水裂隙试样冻融循环次数-εr关系曲线

    Figure 6.  Relationship of freezing-thawing cycle with εr of the saturated fracture samples

    图 7  干裂隙试样冻融循环次数-εr关系曲线(正值为千枚岩、负值为砂岩)

    Figure 7.  Relationship of freezing-thawing cycle with εr of dry frcture samples

    图 8  饱水裂隙试样εd-εr关系曲线

    Figure 8.  Relationship of εd with εr of the saturated fracture samples

    图 9  干裂隙试样εr-饱水裂隙试样εr关系曲线

    Figure 9.  εr relationship of situated fracture samples with dry fracture samples

    图 10  干燥裂隙试样冻融变形影响因素

    黑底标记为砂岩, 白底标记为千枚岩, 下图同

    Figure 10.  Effect factors on freezing-thawing deformation of dry fracture samples

    图 11  饱水裂隙试样冻融变形影响因素

    Figure 11.  Effect factors on freezing-thawing deformation of the saturated fracture samples

    图 12  水对裂隙试样冻融变形影响

    Figure 12.  Effect of water on freezing-thawing deformation of fracture samples

    图 13  冻融条件下干燥岩体矿物差异性变形损伤

    a.含不同矿物(矿物冻融变形大小不同,深色矿物变形大,浅色矿物变形小)岩体; b.“冻缩”过程(虚线),矿物非协调变形产生拉应力,产生损伤(红色短线); c.“热胀”过程(虚线),矿物非协调变形产生挤压应力,产生近一步损伤(红色短线)

    Figure 13.  Deformation damage of mineral difference of dry rock in freezing-thawing condition

    图 14  饱水岩体孔隙水冻胀损伤

    a.含孔隙岩体; b.孔隙饱水,冻结过程孔隙水结成冰,产生冰胀力,造成残余拉张变形和损伤(红色短线)

    Figure 14.  Freezing-thawing damage of pore water of the staturated rocks

    图 15  饱水裂隙岩体冻胀冰劈损伤

    a.裂隙饱水; b.冻结冰劈过程,裂隙水冻结为冰,冰劈力使裂隙尖端扩展; c.试验结束后,尖端处形成闭合损伤裂隙

    Figure 15.  Freezing-thawing damage of the saturated rock mass

    图 16  单轴抗压强度与冻融次数关系曲线

    Figure 16.  Relation curve between uniaxial compressive strength and freezing-thawing cycle

    表  1  岩体物理参数

    Table  1.   Physical parameters of rock mass

    试样类别 密度ρB/(g·cm-3) 孔隙率n/% 吸水率ωa/% 单轴抗压强度/MPa 超声波波速/(m·s-1)
    干燥 饱和 干燥 饱和
    千枚岩 2.77 0.50 0.18 35.2 18.8 5 608 5 902
    砂岩 2.70 1.22 0.45 88.2 76.9 4 581 5 131
    下载: 导出CSV

    表  2  试验方案

    Table  2.   Test program

    类别 裂隙试样 裂隙
    干燥 饱水 长度/cm 宽度/mm 数量/条
    千枚岩 S1-1 S1-2 1/4h 3 1
    S1-3 S1-4 1/2h 3 1
    S1-5 S1-6 3/4h 3 1
    S1-7 S1-8 1/2h 3 2
    S1-9 S1-10 1/2h 6 1
    砂岩 S2-1 S2-2 1/4h 3 1
    S2-3 S2-4 1/2h 3 1
    S2-5 S2-6 3/4h 3 1
    S2-7 S2-8 1/2h 3 2
    S2-9 S2-10 1/2h 6 1
    注:h为试样高度
    下载: 导出CSV

    表  3  饱水裂隙试样εr

    Table  3.   Results of εr of situated sample

    试样 冻融循环次数/次 残余微应变εr/με
    S-2(1/4 h) S-4(1/2 h) S-6(3/4 h) S-8(双裂隙) S-10(6 mm)
    S1/千枚岩 1 20 28 40 80 46
    10 22 37 56 106 69
    20 31 49 81 139 92
    30 43 61 98 175 118
    40 59 82 119 202 141
    50 71 102 145 228 169
    S2/砂岩 1 30 62 66 118 98
    10 37 71 94 149 129
    20 60 90 125 196 156
    30 72 110 167 235 200
    40 91 123 210 276 244
    50 105 139 253 308 303
    下载: 导出CSV

    表  4  干燥裂隙试样εr

    Table  4.   Results of εr of situated sample

    试样 冻融循环次数/次 残余微应变εr/με
    S-1(1/ 4h) S-3(1/2 h) S-5(3/4 h) S-7(双裂隙) S-9(6 mm)
    S1/千枚岩 1 12 14 17 37 22
    10 16 20 26 58 38
    20 21 29 34 80 55
    30 29 38 41 98 75
    40 39 61 64 125 98
    50 51 60 68 161 125
    S2/砂岩 1 -96 -99 -102 -120 -119
    10 -118 -125 -130 -152 -138
    20 -146 -160 -162 -187 -167
    30 -169 -182 -191 -209 -198
    40 -188 -196 -202 -211 -206
    50 -191 -200 -205 -213 -209
    下载: 导出CSV
  • [1] 李杰林. 基于核磁共振技术的寒区岩体冻融损伤机理实验研究[D]. 长沙: 中南大学, 2012.

    Li J L. Experiment study on deterioration mechanism of rock under the conditions of freezing-thawing cycles in cold regions based on NMR technology[D]. Changsha: Central South University, 2012(in Chinese with English abstract).
    [2] Hall K. Evidence for freeze-thaw events and their implications for rock weathering in northern Canada: Ⅱ. The temperature at which water freezes in rock[J]. Earth Surface Processes and Landforms, 2007, 32: 242-259.
    [3] Hall K. A laboratory simulation of rock breakdown due to freeze-thaw in a maritime Antarctic environment[J]. Earth Surface Processes and Landforms, 1988, 13(4): 369-382. doi: 10.1002/esp.3290130408
    [4] Hall K, Marie F A. Rock thermal data at the grain scale: Applicability to granular disintegration in cold environments[J]. Earth Surface Processes and Landforms, 2003, 28(8): 823-836. doi: 10.1002/esp.494
    [5] 刘华, 牛富俊, 徐志英, 等. 循环冻融条件下安山岩和花岗岩的物理力学特性试验研究[J]. 冰川冻土, 2011, 33(3): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201103015.htm

    Liu H, Niu F J, Xu Z Y, et al. Acoustic experiment study of two types of rock from the Tibetan Plateau under the condition of freeze-thaw cycles[J]. Journal of Glaciology and Geocryology, 2011, 33(3): 557-563(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201103015.htm
    [6] 俞缙, 傅国锋, 陈旭, 等. 冻融循环后砂岩三轴卸围压力学特性试验研究[J]. 岩体力学与工程学报, 2015, 34(10): 2001-2009. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201510007.htm

    Yu J, Fu G F, Chen X, et al. Experimental study on mechanical properties of sandstone under triaxial unloading confining pressure after freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 2001-2009(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201510007.htm
    [7] 吴刚, 何国梁, 张磊, 等. 大理岩循环冻融试验研究[J]. 岩体力学与工程学报, 2006, 25(增刊1): 2930-2938. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1049.htm

    Wu G, He G L, Zhang L, et al. Experimental study on cycles of freezing-thawing marble[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 2930-2938(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1049.htm
    [8] 刘成禹, 何满潮, 王树仁, 等. 花岗岩低温冻融损伤特性的实验研究[J]. 湖南科技大学学报: 自然科学版, 2005, 20(1): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200501009.htm

    Liu C Y, He M C, Wang S R, et al. Experimental investigation freeze-thawing damage characteristics of granite at low temperature[J]. Journal of Hunan University of Science & Technology: Natural Science Edition, 2005, 20(1): 37-40(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200501009.htm
    [9] 何国梁, 张磊, 吴刚. 循环冻融条件下岩石物理特性的试验研究[J]. 岩土力学, 2004, 25(增刊2): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2004S200A.htm

    He G L, Zhang L, Wu G. Test study on physical characteristics of rock under freezing-thawing cycles[J]. Rock and Soil Mechanics, 2004, 25(S2): 52-56(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2004S200A.htm
    [10] Yamabe T, Neaupane K M. Determination of some thermo-mechanical properties of Sirahama sandstone under subzero temperature condition[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 1029-1034. doi: 10.1016/S1365-1609(01)00067-3
    [11] 朱立平, Whalley W B, 王家澄. 寒冻条件下花岗岩小块体的风化模拟实验及其分析[J]. 冰川冻土, 1997, 19(4): 312-320. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT704.004.htm

    Zhu L P, Whalley W B, Wang J C. A simulated weathering experiment of small free granite blocks under freeze-thaw conditions[J]. Journal of Glaciology and Geocryology, 1997, 19(4): 312-320(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT704.004.htm
    [12] 路亚妮. 裂隙岩体冻融损伤力学特性试验及破坏机制研究[D]. 武汉: 武汉理工大学, 2013.

    Lu Y L. Study on mechanics characteristic of damage due to freeze action in fractured rock masses and failure mechanism[D] Wuhan: Wuhan University of Technology, 2013(in Chinese with English abstract).
    [13] 裴向军, 蒙明辉, 袁进科, 等. 干燥及饱水状态下裂隙岩石冻融特征研究[J]. 岩土力学, 2017, 38(7): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707020.htm

    Pei X J, Meng M H, Yuan J K, et al. Research on rockmass fracture freezing-thawing character under wet or dry condition[J]. Rock and Soil Mechanics, 2017, 38(7): 1-8(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707020.htm
    [14] 邓红卫, 田维刚, 周科平, 等. 2001-2012年岩体冻融力学研究进展[J]. 科技导报, 2013, 31(24): 74-79. doi: 10.3981/j.issn.1000-7857.2013.24.012

    Deng H W, Tian W G, Zhou K P, et al. Process in freezing-thawing rock mechanics during the period of 2001 to 2012[J]. Science and Technology Review, 2013, 31(24): 74-79(in Chinese with English abstract). doi: 10.3981/j.issn.1000-7857.2013.24.012
    [15] 张全胜, 杨更社, 任建喜. 岩体损伤变量及本构方程的新探讨[J]. 岩体力学与工程学报, 2003, 22(1): 30-34.

    Zhang Q S, Yang G S, Ren J X. New study of damage variable and constitutive equation of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 30-34(in Chinese with English abstract).
    [16] 张慧梅, 杨更社. 冻融与荷载耦合作用下岩体损伤模型的研究[J]. 岩体力学与工程学报, 2010, 29(3): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201311018.htm

    Zhang H M, Yang G S. Research on damage model of rock under couplingaction of freeze-thaw and load[J]. Chinese Journal of Rock Mechanicsand Engineering, 2010, 29(3): 471-476(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201311018.htm
    [17] 夏才初, 黄继辉, 韩常领, 等. 寒区隧道岩体冻胀率的取值方法和冻胀敏感性分级[J]. 岩体力学与工程学报, 2013, 32(9): 1876-1885. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201309022.htm

    Xia C C, Huang J H, Han C L, et al. Methods of frost-heave ratio evalution and classification of frost-heave susceptibility of tunnel surrounding rock in cold regions[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1876-1885(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201309022.htm
    [18] 北川修三, 川上義輝. 基于冻溶试验的岩石冻胀性判定[J]. 应用地质, 1986, 27(2): 11-20.

    Kitagawa Shuzo, Kawakami Yoshiteru. Judgment of frost heaving of rocks by freezing test[J]. Journal of the Japan Society of Engineering Geology, 1986, 27(2): 11-20 (in Chinese with English abstract).
    [19] Tharp T M. Conditions for crack propagation by frost wedging[J]. Geological Society of America Bulletin, 1987, 99(1): 94-102. doi: 10.1130/0016-7606(1987)99<94:CFCPBF>2.0.CO;2
    [20] Kevin H. Freeze-thaw simulation on quartzmicaschist and their implications for weathering studies on Signy Island, Antarctica[J]. British Antarctic Survey, 1986, 73(1): 19-30. http://www.researchgate.net/publication/294177356_Freeze-thaw_simulations_on_quartz-micaschist_and_their_implications_for_weathering_studies_on_Signy_Island_Antarctica
    [21] Mcgreevy J P, Whalley W B. Rock moisture content and frost weathering under natural and experimental conditions: A comparative discussion[J]. Arctic and Alpine Research, 1985, 17(3): 337-346. doi: 10.2307/1551022
    [22] Style R W, Peppin S S L. The kinetics of ice-lens growth in porous media[J]. Journal of Fluid Mechanics, 2012, 692: 482-498. doi: 10.1017/jfm.2011.545
    [23] Hallet B, walder J S, Stubbs C W. Weathering by segregationice growth in microcracks at sustained subzero temperatures: Verification from an experimental study using acoustic emissions[J]. Permafrost and Periglacial Processes, 1991, 2(4): 283-300. doi: 10.1002/ppp.3430020404
    [24] Nakamura D, Goto T, ITo Y, et al. Basic study on the frost heave pressure of rocks-dependence of the location of frost heave on the strength of the rock[J]. Journal of MMIJ, 2011, 127(9): 558-564. doi: 10.2473/journalofmmij.127.558
    [25] 康永水. 裂隙岩体冻融损伤力学特性及多场耦合过程研究[J]. 岩体力学与工程学报, 2012, 31(9): 220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201209024.htm

    Kang Y S. Study on mechanical characteristics and multi field coupling process of freeze thaw damage of fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 220(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201209024.htm
    [26] 徐光苗. 寒区岩体低温、冻融损伤力学特性及多场耦合研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2006.

    Xu G M. Study on mechanical characteristics and multi-physical coupling problems of rock at low temperatures[D]. Wuhan: Wuhan Institute of Geotechnical Mechanics, Chinese Academy of Sciences, 2006(in Chinese).
    [27] Hori M. Micromechanical analysis of deterioration due to freezing and thawing in porous brittle materials[J]. International Journal of Engineering Science, 1998, 36(4): 511-522. doi: 10.1016/S0020-7225(97)00080-3
    [28] 杨更社, 蒲毅彬. 冻融循环条件下岩体损伤扩展研究初探[J]. 煤炭学报, 2002, 27(4): 357-360. doi: 10.3321/j.issn:0253-9993.2002.04.005

    Yang G S, Pu Y B. Initial discussion on the damage propagation of rock under the frost and thaw condition[J]. Journal of China Coal Society, 2002, 27(4): 357-360(in Chinese with English abstract). doi: 10.3321/j.issn:0253-9993.2002.04.005
    [29] 周盛涛, 方文, 蒋楠, 等. 冻融循环作用下砂岩单轴压缩破坏断口特征分形研究[J]. 地质科技通报, 2020, 39(5): 61-68. doi: 10.19509/j.cnki.dzkq.2020.0518

    Zhou S T, Fang W, Jiang N, et al. Fractal geometry study on uniaxial compression fracture characteristics of sandstone subjected to freeze-thaw cycles[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 61-68(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0518
    [30] 杨龙, 史小勇, 陈钱, 等. 循环荷载作用下片麻岩劣化损伤机理与规律试验[J]. 地质科技通报, 2020, 39(5): 55-60. doi: 10.19509/j.cnki.dzkq.2020.0517

    Yang L, Shi X Y, Chen Q, et al. Mechanism and laws of deterioration and damage of gneisses under cyclic loading[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 55-60(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0517
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  1061
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-03

目录

    /

    返回文章
    返回