留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图像识别的碎屑流颗粒分布特征及碎屑流与房屋相互作用探究

彭双麒 柯灵 郑体 徐继忠

彭双麒, 柯灵, 郑体, 徐继忠. 基于图像识别的碎屑流颗粒分布特征及碎屑流与房屋相互作用探究[J]. 地质科技通报, 2021, 40(6): 226-235. doi: 10.19509/j.cnki.dzkq.2021.0622
引用本文: 彭双麒, 柯灵, 郑体, 徐继忠. 基于图像识别的碎屑流颗粒分布特征及碎屑流与房屋相互作用探究[J]. 地质科技通报, 2021, 40(6): 226-235. doi: 10.19509/j.cnki.dzkq.2021.0622
Peng Shuangqi, Ke Ling, Zheng Ti, Xu Jizhong. Particle distribution characteristics of rock avalanche and the interaction between rock avalanche and houses based on image recognition[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 226-235. doi: 10.19509/j.cnki.dzkq.2021.0622
Citation: Peng Shuangqi, Ke Ling, Zheng Ti, Xu Jizhong. Particle distribution characteristics of rock avalanche and the interaction between rock avalanche and houses based on image recognition[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 226-235. doi: 10.19509/j.cnki.dzkq.2021.0622

基于图像识别的碎屑流颗粒分布特征及碎屑流与房屋相互作用探究

doi: 10.19509/j.cnki.dzkq.2021.0622
详细信息
    作者简介:

    彭双麒(1995-), 男, 助理工程师, 主要从事岩土工程与地基基础相关研究工作。E-mail: 2694253535@qq.com

  • 中图分类号: X43

Particle distribution characteristics of rock avalanche and the interaction between rock avalanche and houses based on image recognition

  • 摘要: 由于崩滑-碎屑流具有高隐蔽性、发生时间短暂以及较低的可预见性,较难直观观测崩滑-碎屑流发生的过程。为了对碎屑动力特性及对房屋的破坏情况进行研究,拟对碎屑流堆积体及其粒径分布进行分析。以普洒村崩塌-碎屑流为例,使用PCAS系统对碎屑流堆积体图像进行颗粒识别、统计,并通过量纲分析法,分析堆积体颗粒与房屋破坏之间的定量联系。分析结果发现:与现场筛分统计相比,图像识别堆积体颗粒的方法得到的数据更全面、详细,并且能节省大量的人力、物力资源。另外,对房屋与碎屑流之间的相互作用进行了探究,发现房屋对碎屑流颗粒有"拦粗排细"的作用。同时,利用图像识别得到的颗粒粒径数据对推导出房屋破坏的判别公式,判别效果较好,能够在地质灾害防治、预测领域发挥一定作用。

     

  • 图 1  普洒村崩塌堆积区全貌

    Figure 1.  Whole picture of the collapse congeries of Pusa Village

    图 2  普洒村崩塌堆积体工程地质剖面图

    T1y.下三叠统夜郎组;P2c-d.上二叠统长兴组-大隆组;P2l.上二叠统龙潭组

    Figure 2.  Engineering geological section of collapse congerie in Pusa Village

    图 3  PCAS系统图像识别堆积体粒径过程及结果

    Figure 3.  Image recognition process and results of particle size of PCAS system

    图 4  崩塌堆积分区示意图

    An/Bn/Cn. 崩塌堆积分区代号

    Figure 4.  Partition diagram of the collapse congeries body

    图 5  堆积体纵向区域粒径数统计累计曲线

    Figure 5.  Cumulative curve of particle size statistics in longitudinal area of congeries

    图 6  垂直于主滑方向区域颗粒粒径累计曲线

    Figure 6.  Aggregate curve of particle size perpendicular to the main sliding direction

    图 7  各区域不同粒径范围所占比例

    Figure 7.  Proportion of different particle size grades in each area

    图 8  房屋平面位置分布图

    Figure 8.  Location of the house

    图 9  垂直于主滑方向各区域不同粒径范围颗粒所占比例

    堆积后部区对应B1、A2、C1区;堆积中部区对应B2、A5、C2区;堆积前缘区对应B3、A8、C3区

    Figure 9.  Proportion of different particle size grades in each area perpendicular to the main sliding direction

    图 10  普洒村崩塌碎屑流房屋破坏的判据图

    Figure 10.  Criterion of the destruction of houses in the rock avalanche in Pusa Village

    表  1  破坏房屋距崩塌源中部的水平距离以及距崩塌物源高度

    Table  1.   Horizontal distance of the damaged house from the middle of the collapse source and the height of the damaged house from collapse source

    房屋编号 运动距离L/m 高差ΔH/m 房屋编号 运动距离L/m 高差ΔH/m 房屋编号 运动距离L/m 高差ΔH/m
    1 613.16 249 16 566.45 242 31 624.43 260
    2 645.78 249 17 547.55 240 32 718.49 272
    3 678.98 254 18 535.23 241 33 703.67 271
    4 682.24 254 19 522.37 238 34 685.68 270
    5 658.27 254 20 587.46 249 35 694.40 271
    6 639.84 253 21 581.23 249 36 681.21 270
    7 641.44 254 22 598.17 251 37 659.85 268
    8 708.25 257 23 531.15 239 38 769.52 278
    9 558.77 243 24 603.83 250 39 749.19 276
    10 574.57 245 25 537.39 246 40 700.61 271
    11 592.31 247 26 530.11 246 41 530.47 240
    12 582.02 246 27 517.92 246 42 500.80 237
    13 559.99 242 28 517.11 244 43 523.11 238
    14 602.69 251 29 599.63 256 44 663.77 268
    15 578.72 242 30 619.62 258 45 459.26 241
    下载: 导出CSV

    表  2  普洒村崩塌冲毁房屋判别结果

    Table  2.   Discriminating results of the houses damaged by collapse in Pusa Village

    房屋编号 判别结果F 房屋编号 判别结果F 房屋编号 判别结果F 房屋编号 判别结果F 房屋编号 判别结果F
    1 1.27 10 1.42 19 1.67 28 1.75 37 1.18
    2 1.14 11 1.35 20 1.38 29 1.36 38 0.9
    3 1.05 12 1.39 21 1.41 30 1.29 39 0.94
    4 1.04 13 1.48 22 1.34 31 1.28 40 1.06
    5 1.12 14 1.32 23 1.62 32 1.01 41 1.63
    6 1.18 15 1.38 24 1.31 33 1.05 42 1.81
    7 1.18 16 1.44 25 1.63 34 1.1 43 1.66
    8 0.98 17 1.53 26 1.68 35 1.08 44 1.16
    9 1.49 18 1.61 27 1.75 36 1.11 45 2.19
    下载: 导出CSV
  • [1] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001

    Huang R Q. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.03.001
    [2] 许强, 黄润秋, 殷跃平, 等. 2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J]. 工程地质学报, 2009, 17(4): 433-444. doi: 10.3969/j.issn.1004-9665.2009.04.001

    Xu Q, Huang R Q, Ying Y P, et al. The Jiweishan landslide of June 5, 2009 in Wulong, Chongqing: Characteristics and failure mechanism[J]. Journal of Engineering Geology, 2009, 17(4): 433-444(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2009.04.001
    [3] 许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报, 2017, 36(11): 2612-2628. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711002.htm

    Xu Q, Li W L, Dong X J et al. The Xinmocun landslide on June 24, 2017 in Maoxian, Sichuan: Characteristics and failure mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2612-2628(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711002.htm
    [4] 彭双麒, 许强, 郑光, 等. 碎屑流堆积物粒度分布与运动特性的关系: 以贵州纳雍普洒村崩塌为例[J]. 水文地质工程地质, 2018, 45(4): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201804019.htm

    Peng S Q, Xu Q, Zheng G, et al. Realationship between particle size distribution and movement characteristics of rock avalanche deposits in Nayongpusa Village, Guizhou Province[J] Hydrogeology & Engineering Geology, 2018, 45(4): 129-136(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201804019.htm
    [5] 郑光, 许强, 巨袁臻, 等. 2017年8月28日贵州纳雍县张家湾镇普洒村崩塌特征与成因机理研究[J]. 工程地质学报, 2018, 26(1): 223-240. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801023.htm

    Zheng G, Xu Q, Ju Y Z, et al. The Pusacun rock avalanche on August 28, 2017 in Zhangjiawan Nayongxian, Guizhou: Characteristics and failure mechanism[J]. Journal of Engineering Geology, 2018, 26(1): 223-240(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801023.htm
    [6] 彭双麒, 许强, 郑光, 等. 白格滑坡-碎屑流堆积体颗粒识别与分析[J]. 水利水电技术, 2020, 51(2): 144-154. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202002017.htm

    Peng S Q, Xu Q, Zheng G, et al. Recognition and analysis of deposit body grain of Baige Landslide-Debris Flow[J] Water Resources and Hydropower Engineering, 2020, 51(2): 144-154(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202002017.htm
    [7] Li H J, Xu Q, He Y. et al. Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models[J]. Landslides, 2018, 15(10): 2047-2059. doi: 10.1007/s10346-018-1020-2
    [8] 覃瀚萱, 桂蕾, 余玉婷, 等. 基于滑坡灾害预警分级的应急处置措施[J]. 地质科技情报, 2021, 40(4): 187-195. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104018.htm

    Qin H X, Gui L, Yu Y T, et al. Emergency measures based on early warning classification of landslide[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 187-195(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104018.htm
    [9] 吴益平, 唐辉明, 殷坤龙. 物元模型在滑坡灾害风险预测中的应用[J]. 地质科技情报, 2003, 22(4): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200304018.htm

    Wu Y P, Tang H M, Yin K L. Application of matter-element model in landslide hazard risk assessment[J]. Geological Science and Technology Information, 2003, 22(4): 96-100(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200304018.htm
    [10] Yang Q, Cai F, Su Z, et al. Numerical simulation of granular flows in a Large Flume using discontinuous deformation analysis[J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 2299-2306. doi: 10.1007/s00603-013-0489-1
    [11] Yuan R M, Tang C I, Hu J C, et al. Mechanism of the Donghekou landslide triggered by the 2008 Wenchuan earthquake revealed by discrete element modeling[J]. Natural Hazards and Earth System Sciences, 2014, 14(6): 1195-1205. http://www.onacademic.com/detail/journal_1000040545889410_b1b1.html
    [12] Yu X, Chen X. Variational laws of debris flow impact force on the Check Dam surface based on orthogonal experiment design[J]. Geotechnical and Geological Engineering, 2017, 35(6): 2511-2522. doi: 10.1007/s10706-017-0258-0
    [13] 毕钰璋, 何思明, 王东坡, 等. 碎屑流冲击下的桥墩动力响应特征分析[J]. 中国地质灾害与防治学报, 2017, 28(4): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201704004.htm

    Bi Y Z, He S M, Wang D P, et al. Discrete-element investigation of rock avalanches impact on the bridge pier[J]. The Chinese Journal of Geological Hazard and Control, 2017, 28(4): 16-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201704004.htm
    [14] Jiang Y J, Zhao Y, Towhata I, et al. Influence of particle characteristics on impact event of dry granular flow[J]. Powder Technology, 2015, 270(A): 53-67. http://www.researchgate.net/profile/Yuan-Jun_Jiang/publication/267100618_Influence_of_particle_characteristics_on_impact_event_of_dry_granular_flow/links/54f5893f0cf2f28c1364e99c.pdf
    [15] Jiang Y J, Towhata I. Experimental study of dry granular flow and impact behavior against a rigid retaining wall[J]. Rock Mechanics and Rock Engineering, 2013, 46(4): 713-729. doi: 10.1007/s00603-012-0293-3
    [16] Adel A, Stéphane L, Thierry F. Dry granular avalanche impact force on a rigid wall: Analytic shock solution versus discrete element simulations[J]. Physical Review E, 2018, 97(5): 052903. doi: 10.1103/PhysRevE.97.052903
    [17] 赵辉. 粗颗粒堆积体塌滑蔓延试验与遮挡措施研究[D]. 北京: 北京交通大学, 2018.

    Zhao H. Experimental studies on sliding and scattering characteristics of coarse-aggregate soil mass and blocking measures of sliding soil mass[D]. Beijing: Beijing Jiaotong University, 2018(in Chinese with English abstract).
    [18] 王品, 徐则民. 头寨大型高速远程滑坡碎屑流堆积体的粒度组成[J]. 山地学报, 2013, 31(6): 745-752. doi: 10.3969/j.issn.1008-2786.2013.06.014

    Wang P, Xu Z M. The grain size composition of Touzhai rock-avalanche deposits[J]. Journal of Mountain Science, 2013, 31(6): 745-752(in Chinese with English abstract). doi: 10.3969/j.issn.1008-2786.2013.06.014
    [19] Zhang L M, Xu Y, Huang R Q, et al. Particle flow and segregation in a giant landslide event triggered by the 2008 Wenchuan earthquake, Sichuan, China[J]. Natural Hazards & Earth System Sciences, 2011, 11(4): 1153-1162. http://www.onacademic.com/detail/journal_1000040545869710_3773.html
    [20] 徐丽坤, 刘晓东, 向小翠. 基于深度信念网络的遥感影像识别与分类[J]. 地质科技情报, 2017, 36(4): 244-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704032.htm

    Xu L K, Liu X D, Xiang X C. Recognition and classification for remote sensing image based on depth belief network[J]. Geological Science and Technology Information, 2017, 36(4): 244-249(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704032.htm
    [21] Hitzl A P, Jörres R A, Heinemann F, et al. Aerial photography collected with a multirotor drone reveals impact of Eurasian beaver reintroduction on ecosystem structure[J]. Journal of Unmanned Vehicle Systems, 2015, 3(3): 123-130. doi: 10.1139/juvs-2015-0005
    [22] Xu Q, Li H J, He Y, et al. Comparison of data-driven models of loess landslide runout distance estimation[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 1281-1294. doi: 10.1007/s10064-017-1176-3
    [23] Jiao K, Yao S, Liu C, et al. The characterization and quantitative analysis of nanopores in unconventional gas reservoirs utilizing FESEM-FIB and image processing: An example from the lower Silurian Longmaxi Shale, upper Yangtze region, China[J]. International Journal of Coal Geology, 2014, 128/129(3): 1-11. http://www.sciencedirect.com/science/article/pii/S0166516214000664
    [24] Liu Y, Wu L. Geological disaster recognition on optical remote sensing images using deep learning[J]. Procedia Computer Science, 2016, 91: 566-575. doi: 10.1016/j.procs.2016.07.144
    [25] 彭双麒, 许强, 李骅锦, 等. 基于高精度图像识别的堆积体粒径分析[J]. 工程地质学报, 2019, 27(6): 1290-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201906011.htm

    Peng S Q, Xu Q, Li H J, et al. Grain size distribution analysis of landslide deposits with reliable image identification[J]. Journal of Engineering Geology, 2019, 27(6): 1290-1301(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201906011.htm
    [26] Liu C, Shi B, Zhou J. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials[J]. Applied Clay Science, 2011, 54(1): 97-106. doi: 10.1016/j.clay.2011.07.022
    [27] Lin Q, Yan J, Zhou J, et al. Microstructure study on intact clay behavior subjected to cyclic principal stress rotation[J]. Procedia Engineering, 2016, 143: 991-998. doi: 10.1016/j.proeng.2016.06.088
    [28] Liu C, Pollard D D, Aydin A, et al. Mechanism of formation of wiggly compaction bands in porous sandstone: Observations and conceptual model[J]. Journal of Geophysical Research, 2015, 120(12): 8138-8152. doi: 10.1002/2015JB012374
    [29] 彭双麒. 滑坡-碎屑流堆积体粒度分布研究[D]. 成都: 成都理工大学, 2020.

    Peng S Q. The study for grain size distribution of rock avalanche deposit[D]. Chengdu: Chengdu University of Technology, 2020 (in Chinese with English abstract).
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  628
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-20

目录

    /

    返回文章
    返回