留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GF-2遥感数据在盖孜河流域典型第四纪地层调查中的应用

张志军 徐马强 王明 李显巨 董玉森 陈伟涛 吴春明 王力哲

张志军, 徐马强, 王明, 李显巨, 董玉森, 陈伟涛, 吴春明, 王力哲. GF-2遥感数据在盖孜河流域典型第四纪地层调查中的应用[J]. 地质科技通报, 2021, 40(6): 302-312. doi: 10.19509/j.cnki.dzkq.2021.0630
引用本文: 张志军, 徐马强, 王明, 李显巨, 董玉森, 陈伟涛, 吴春明, 王力哲. GF-2遥感数据在盖孜河流域典型第四纪地层调查中的应用[J]. 地质科技通报, 2021, 40(6): 302-312. doi: 10.19509/j.cnki.dzkq.2021.0630
Zhang Zhijun, Xu Maqiang, Wang Ming, Li Xianju, Dong Yusen, Chen Weitao, Wu Chunming, Wang Lizhe. Application of GF-2 remote sensing data for typical Quaternary stratigraphic survey in Gaizi River Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 302-312. doi: 10.19509/j.cnki.dzkq.2021.0630
Citation: Zhang Zhijun, Xu Maqiang, Wang Ming, Li Xianju, Dong Yusen, Chen Weitao, Wu Chunming, Wang Lizhe. Application of GF-2 remote sensing data for typical Quaternary stratigraphic survey in Gaizi River Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 302-312. doi: 10.19509/j.cnki.dzkq.2021.0630

GF-2遥感数据在盖孜河流域典型第四纪地层调查中的应用

doi: 10.19509/j.cnki.dzkq.2021.0630
基金项目: 

中国地质调查局地质调查项目 DD20191016

高分辨率对地观测系统重大专项 GFZX0404130302

详细信息
    作者简介:

    张志军(1986-), 男, 现正攻读军事地质学专业博士学位, 主要从事遥感技术在地质调查中的应用研究。E-mail: zhangzhijun-0001@163.com

    通讯作者:

    王力哲(1974-), 男, 教授, 博士生导师, 主要从事空间信息处理与服务方面的教学与研究工作。E-mail: lizhe.wang@foxmail.com

  • 中图分类号: P53

Application of GF-2 remote sensing data for typical Quaternary stratigraphic survey in Gaizi River Basin

  • 摘要: 国产高分辨率卫星遥感技术的发展为第四系宏观、局部及细部特征调查提供了新的手段。中巴经济走廊东段地区分布较多的冲洪积扇、河谷阶地、冰川堆积等地貌类型,为了研究国产高分数据在该地区第四纪地质调查中的适用性,以高分二号(GF-2)影像为主要数据源,借助数字高程模型构建三维场景,选取中巴公路沿线盖孜河流域乌鲁阿特山前冲洪积扇、盖孜河河谷阶地与克拉牙依拉克冰川堆积物3处典型第四纪地层为研究对象,建立了遥感解译标志,并进行了精细尺度遥感解译;经过野外实地验证,查明了其物质组成与变化规律,修正了前人关于克拉牙依拉克冰川不同期次冰碛物的划分范围;通过对盖孜河河谷阶地分析,盖孜河流域晚更新世以来经历了至少5次阶段性构造抬升,阶地基座冰碛物至少由两期冰川作用形成。研究表明,GF-2影像能快速从宏观尺度上识别地貌、松散堆积物变化特征,能够看到常规方法无法观察到的地质现象;满足大比例尺解译、制图要求,特别是在微地貌识别以及第四纪地层解译中,能够提升精细地质解译水平。研究成果能为盖孜河流域河流、冰川的发展演化过程研究提供基础地质资料,为中巴公路沿线第四纪土体遥感调查提供典型案例。

     

  • 图 1  研究区地貌图

    Figure 1.  Geomorphologic map of the study area

    图 2  乌鲁阿特山前倾斜平原遥感解译结果

    Q4col.全新世风积; Q4pal.全新世冲洪积; Q3-4al.晚更新世-全新世冲积; Q3pal.晚更新世冲洪积; Q3gl.晚更新世冰碛

    Figure 2.  Remote sensing interpretation of the sloping plain in front of the Uruat Mountains

    图 3  盖孜河谷阶地解译结果

    Figure 3.  Remote sensing interpretation of Gaizi River valley terrace

    图 4  克拉牙依拉克冰碛物解译结果(a)和立体影像(b, c)(图例同图 3)

    Figure 4.  Interpretation of Clathrate Irak glacial till (a) and three-dimensional images (b, c)

    图 5  克拉牙依拉克冰川遗迹分布图(据文献[19])

    Figure 5.  Remnants of Clathrate Irak glaciation

    图 6  晚更新世冲洪积扇扇中细砾夹中砾(a)和扇前缘风积沙丘(b)

    Figure 6.  Fine gravel clip pebblestone at the midddle alluvial and flood fan in the late Pleistocene sediment (a) and eolian dunes at front alluvial fan (b)

    图 7  乌鲁阿特山前倾斜平原A-A′剖面图

    Q3pal.晚更新世冲洪积;Q3-4al.晚更新世-全新世冲洪积;Q4pal.全新世冲洪积;Q4eol.全新世风积

    Figure 7.  A-A′ profile of sloping plain in front of Mount Uruat

    图 8  盖孜河谷北岸阶地照片(a)、T3阶地阶坎(b)及T5阶地边缘冰碛物(c)

    Figure 8.  Terraces of the north bank at Gaizi valley (a) and terrace and step of T3 (b), glacial till at the edge of terrace of T5 (c)

    图 9  盖孜河谷阶地B-B′实测横剖面

    Q3gl.晚更新世冰碛;Q3al.晚更新世冲积;Q4al.全新世冲积

    Figure 9.  B-B′ measured cross-section of terrace at Gaizi River valley

    图 10  Tc4冰碛台地及局部照片

    Figure 10.  Moraine platform and some photos of Tc4

    表  1  GF-2卫星主要技术指标(据文献[27])

    Table  1.   Technical index of the GF-2 satelite

    技术性能
    轨道 轨道类型及高度 太阳同步回归轨道,631 km
    重访、覆盖特性 无侧摆时,69天可完成全球无缝覆盖观测;侧摆23°时,全球任意地区重访周期不大于5天
    观测能力 谱段/μm 全色:0.45~0.90
    多光谱:0.45~0.52;0.52~0.59;0.63~0.69;0.77~0.89
    星下点地面分辨率/m 全色谱段0.81,多光谱谱段3.24
    地面幅宽, 定位精度/km >45, 平面无控制点50
    姿态控制 控制方式;姿态指向精度;稳定度 三轴稳定,对地定向;≤0.05°(三轴,3σ);≤5×10-4°/s(三轴,3σ)
    惯性空间测量精度 ≤0.003°(三轴,3σ)
    姿态机动能力 侧摆±35°,35°范围内侧摆及稳定时间小于180 s
    具有每轨侧摆2次的能力
    下载: 导出CSV

    表  2  山前冲洪积扇解译标志

    Table  2.   Interpretation marks of piedmont alluvial and diluvial fan

    标志 描述
    分布位置 位于山前河流出山口的广大倾斜平原上
    形状 呈扇状
    大小 大小不一,通常横向可达数十千米
    色调 色调呈现过渡形式,但扇前缘地下水泄出带常出现色调突变
    纹理 由扇顶至扇前缘,纹理由粗糙逐渐过渡为平滑
    下载: 导出CSV

    表  3  河流阶地解译标志

    Table  3.   Interpretation marlcs of river terrace

    标志 描述
    分布位置 位于河流两侧,高于河漫滩,越老的阶地离河床越远
    色调 阶面色调均匀、较浅,阶坎色调较深且有阴影存在
    形状 阶地表面较平坦,沿河床呈宽窄不等的条带状展布,组合为阶梯状(据文献[30])
    大小 阶地大小不一,高低不同
    阴影 阶坎有阴影存在,阴影深浅、长宽随阶坎高低、倾角变化而变化
    下载: 导出CSV

    表  4  冰川冰碛物解译标志

    Table  4.   Interpretation marks of glacial drifts

    标志 描述
    分布位置 位于冰川冰舌的前缘及两侧,古冰川的冰碛物通常在现代冰川前缘及周边,分布范围较广
    色调 现代冰川冰碛物多呈灰黑色,古冰川冰碛物由于有现代沉积物覆盖而呈黄色、浅黄色
    形状 较新的冰川冰碛物多被保留在冰槽谷的两侧,呈细条带状;古冰川的冰碛物多呈台地、垄岗状
    大小 因冰川规模大小及经后期改造的不同而不同
    纹理 不同期次的冰碛物纹理不同,较老的冰碛物由于后期风化剥蚀夷平及现代沉积物覆盖,纹理平坦光滑;较新的冰碛物通常表面呈鳞片状,坑坑洼洼,高低不平
    下载: 导出CSV
  • [1] 贾丽云, 叶培盛, 张绪教, 等. 新构造填图方法探索、应用与实践: 以内蒙古呼勒斯太苏木图幅1: 5万填图试点为例[J]. 地质力学学报, 2017, 23(2): 189-205. doi: 10.3969/j.issn.1006-6616.2017.02.002

    Jia L Y, Ye P S, Zhang X J, et al. Application and practice of the neotectonic geological mapping methods: A case study of 1: 50000 mapping pilot in Hulesitai, Inner Mongolia, China[J]. Journal of Geomechanics, 2017, 23(2): 189-205(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6616.2017.02.002
    [2] 李辉, 余忠迪, 蔡晓斌, 等. 基于无人机遥感的河流阶地提取[J]. 地球科学, 2017, 42(5): 734-742. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705008.htm

    Li H, Yu Z D, Cai X B, et al. River terrace extraction based on unmanned aerial vehicle remote sensing[J]. Earth Science, 2017, 42(5): 734-742(in chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705008.htm
    [3] 迟振卿, 张绪教, 李金洪, 等. 遥感技术在第四纪地质调查中的应用: 以南水北调中线工程天津干渠为例[J]. 第四纪研究, 1999, 19(3): 254-259. doi: 10.3321/j.issn:1001-7410.1999.03.009

    Chi Z Q, Zhang X J, Li J H, et al. Application of remote sense technique in quaternary geological investigation: A case study in pre-constructing Tianjin trunk canal of northward diversion works from Changjiang River[J]. Quaternary Sciences, 1999, 19(3): 254-259(in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.1999.03.009
    [4] 张微, 杨金中, 王晓红. 基于特征地貌类型的湖州市第四纪地质遥感信息提取方法探讨[J]. 国土资源遥感, 2009, 21(3): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200903013.htm

    Zhang W, Yang J Z, Wang X H. The remote sensing information extraction of Quaternary sediments based on geomorphologic information: A case study of Huzhou City[J]. Remote Sensing for Land & Resources, 2009, 21(3): 45-48(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200903013.htm
    [5] 潘天录. 遥感技术在第四纪地质研究中的应用[J]. 四川地质研究中的应用, 2011, 31(4): 481-484. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201704117.htm

    Pan T L. The application of remote sensing technology to the study of Quaternary geology[J]. Acta Geologica Sichuan, 2011, 31(4): 481-484(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201704117.htm
    [6] 戴文晗, 刘世丰. 遥感技术在深圳: 大亚湾沿海高速公路工程地质调查及选线中的应用[J]. 国土资源遥感, 1996, 18(2): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG602.007.htm

    Dai W H, Liu S F. The application of remote sensing technology in engineering geological investigation and the route selection of Shenzen: Dayawan coastal highway[J]. Remote sensing for land& resources, 1996, 18(2): 51-56(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG602.007.htm
    [7] 张绪教, 李团结, 陆平, 等. 卫星遥感在西藏安多幅1: 25万区域第四纪地质调查中的应用[J]. 现代地质, 2008, 22(1): 107-115. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200801017.htm

    Zhang X J, Li T J, Lu P. et al. Application of satellite remote sensing to 1: 250000 regional Quaternary investigation in Amdo Sheet, Tibet[J]. Geoscience, 2008, 22(1): 107-115(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200801017.htm
    [8] 张艳, 孙杰, 于长春, 等. 基于多源遥感数据的第四系覆盖物分类方法研究: 以内蒙古旗杆甸子幅1: 5万填图试点为例[J]. 地质科技情报, 2019, 38(2): 281-290. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902034.htm

    Zhang Y, Sun J, Yu C C. et al. Classification of quaternary coverings in desert grassland shallow cover area based on multi-source remote sensing data: A case of 1: 50000 pilot geological mapping in Qigandianzi, Inner Mongolia. [J]. Geological Science and Technology information, 2019, 38(2): 281-290(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902034.htm
    [9] 叶梦旎. 多源遥感数据在河套盆地第四纪地质与土地资源调查中的应用[D]. 北京: 中国地质大学(北京), 2017.

    Ye M N. The application of multi-source remote sensing data in Quaternary geology and tectonic mapping: Taking the 1: 50000 mapping pilot of the Hulesitaiarea, Inner Mongolia as an example[D]. Beijing: China University of Geosciences(Beijing), 2017(in Chinese with English abstract).
    [10] Fu B, Lin A, Kano K I, et al. Application of stereoscopic satellite images for studying Quaternary tectonics in arid regions[J]. International Journal of Remote Sensing, 2004, 25(3): 537-547(in Chinese with English abstract). doi: 10.1080/0143116031000150031
    [11] 昝梅. 艾比湖阶地三维反演研究[J]. 国土资源遥感, 2010, 24(4): 126-130. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201004027.htm

    Zan M. A three-dimensional inversion study of ebinur terrace[J]. Remote Sensing for Land & Resources, 2010, 24(4): 126-130(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201004027.htm
    [12] 秦绪文, 唐壮, 陈伟涛. 基于高分辨率卫星遥感技术的风化层厚度制图方法[J]. 地质科技通报, 2020, 39(3): 195-201. doi: 10.19509/j.cnki.dzkq.2020.0321

    Qin X W, Tang Z, Chen W T. Weathered layer thickness mapping method based on high resolution satellite remote sensing technology[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 195-201(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0321
    [13] 梁世川. 盖孜河水源地构造成因"跌水"分析及数值模拟[D]. 乌鲁木齐: 新疆大学, 2013.

    Liang S C. The tectonic origin analysis and numerical simulation model of the "head fall" phenomenon in Gaizi river water source[D]. Urumqi: Xinjiang University, 2013(in Chinese with English abstract).
    [14] 刘慧中, 刘斌, 张静, 等. 盖孜河流域地下水水化学特征及生活饮用水分布[J]. 新疆地质, 2014, 32(4): 535-539. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201404025.htm

    Liu H Z, Liu B, Zhang J, et al. The characteristic of groundwater chemistry migration and the range of domestic drinking water quality distribution in Kashgar[J]. Xinjiang Geology, 2014, 32(4): 535-539(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201404025.htm
    [15] 尚彦军, 李坤, 陈全君, 等. 奥布公路泥石流危险性评价[J]. 新疆地质, 2019, 37(3): 382-388. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201903021.htm

    Shang Y J, Li K, Chen Q J, et al. Risk evaluation of debris flow along Ao-Bu section of Karakoram highway[J]. Xinjiang Geology, 2019, 37(3): 382-388(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201903021.htm
    [16] Yasmeen A, Javed I. Spatio temporal change of selected glaciers along Karakoram Highway from 1994-2017 using remote sensing and GIS techniques. ISPRS Annals of Photogrammetry, [J]. Remote Sensing and Spatial Information Sciences, 2018, 4(3): 7-11.
    [17] Shangguan D H, Liu S Y, Ding Y J, et al. Characterizing the May 2015 Karayaylak Glacier surge in the eastern Pamir Plateau using remote sensing[J]. Journal of Glaciology, 2016, 62(235): 944-953. http://pdfs.semanticscholar.org/cbeb/e3c06ee4f2044254032a5738e6b149030ffd.pdf
    [18] Zhang Z, Xu J L, Liu S Y, et al. Glacier changes since the early 1960s, eastern Pamir, China[J]. Journal of Mountain Science, 2016, 13(2): 276-291. doi: 10.1007/s11629-014-3172-4
    [19] 王杰, 周尚哲, 赵井东, 等. 东帕米尔公格尔山地区第四纪冰川地貌与冰期[J]. 中国科学: 地球科学, 2011, 41(3): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201103007.htm

    Wang J, Zhou S Z, Zhao J D, et al. Quaternary glacial geomorphology and glaciations of Kongur Mountain, eastern Pamir[J]. China Science(Earth Science), 2011, 41(3): 6-13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201103007.htm
    [20] 朱天行. 东帕米尔盖孜河流域地貌特征及区域构造活动关系研究[D]. 杭州: 浙江大学, 2019.

    Zhu T X. The geomorphology of the Gezi river drainage basin, eastern Pamir, and its relationship with regional tectonics[D]. Hangzhou: Zhejiang University, 2019(in Chinese with English abstract).
    [21] Chen S Q, Chen H L. Late Cenozoic activity of the Tashkurgan normal fault and implications for the origin of the Kongur Shan extensional system, Eastern Pamir[J]. Journal of Earth Science, 2020, 31(4): 1-12. http://www.cqvip.com/QK/84134X/202004/7102548299.html
    [22] Yoshiki N, Fu B H. Extracting lithologic information from aster multispechral thermal infrared data in the Northeastern Pamirs[J]. Xinjiang Geology, 2003, 21(1): 22-28. http://www.researchgate.net/publication/281162879_Extracting_lithologic_information_from_ASTER_multispectral_thermal_infrared_data_in_the_northeastern_Pamirs
    [23] Yoshiki N, Fu B H. Wide area lithologic mapping with ASTER thermal infrared data: Case studies for the regions in/around the Pamir Mountains and the Tarim Basin[J]. IOP Conference Series: Earth and Environmental Science, 2017, 74(1): 1-4. doi: 10.1088/1755-1315/74/1/012006/pdf
    [24] Alexander C, Robinson, An Y, et al. The role of footwall deformation and denudation in controlling cooling age patterns of detachment systems: An application to the Kongur Shan extensional system in the Eastern Pamir, China[J]. Tectonophysics, 2010, 496(1): 28-43. http://www.sciencedirect.com/science/article/pii/S0040195110004257
    [25] 杨栓成, 魏学利, 陈宝成, 等. 中巴公路奥-布段水毁灾害及风险性评价研究[J]. 人民长江, 2019, 50(9): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201909007.htm

    Yang S C, Wei X L, Chen B C, et al. Research on flood damage disaster and risk assessment along Ao-Bu section of Sino-Pakistan Highway[J]. Yangtze River, 2019, 50(9): 35-41(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201909007.htm
    [26] 中国科学院地理科学与资源研究所. 20170314-T-466地貌类型分类及编码规范[S]. 北京: 国家市场监督管理局, 中国国家标准化管理委员会, 2019.

    Institute of Geographic Sciences and Natural Resources Research. 20170314-T-466 Specifications of classification and coding of geomorphological types[S]. Beijing: State Administration for Market Supervision, Standardization Administration of China, 2019(in Chinese with English abstract).
    [27] 张亮, 那晓东, 刘知, 等. 基于国产GF-2卫星影像的遥感地质解译: 以阿吾拉勒地区为例[J]. 地质科技情报, 2018, 37(2): 233-240. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802032.htm

    Zhang L, Na X D, Liu Z, et al. Remote sensing geological interpretation based on domestic GF-2 satellite imagery: A case study of the Awulale area[J]. Geological Science and Technology Information, 2018, 37(2): 233-240(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802032.htm
    [28] 刘肖姬, 梁树能, 吴小娟, 等. "高分二号"卫星数据遥感滑坡灾害识别研究: 以云南东川为例[J]. 航天返回与遥感, 2015, 36(4): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201504019.htm

    Liu X J, Liang S N, Wu X J, et al. Interpretation of landslide in Dongchuan district of Yunnan province using GF-2 satellite data[J]. Spacecraft Recovery & Remote Sensing, 2015, 36(4): 93-100(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201504019.htm
    [29] 胡骁. 基于遥感和高精度DEM数据的鹤庆盆地活动构造识别研究[D]. 北京: 中国地质大学(北京), 2015.

    Hu X. Research on identification of active tectonics in heqing basin based on remote sensing data and high precision DEM data[D]. Beijing: China University of Geosciences(Beijing), 2015(in Chinese with English abstract).
    [30] 叶梦旎, 张绪教, 叶培盛, 等. SPOT6与无人机航测技术在第四纪地质及活动构造填图中的应用: 以内蒙古1: 50000呼勒斯太苏木等图幅填图试点为例[J]. 地质力学学报, 2016, 22(2): 366-378. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201602016.htm

    Ye M N, Zhang X J, Ye P S, et al. Application of spot 6 and the UAV aerial technology in Quaternary geology and tectonic mapping: Taking the 1: 50000 mapping pilot of the Hulesitai area, Inner Mongolia as an example[J]. Journal of Geomechanics, 2016, 22(2): 366-378(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201602016.htm
    [31] 陈云芳. 遥感技术在怒江河谷潞江段晚新生代研究中的应用及意义[D]. 北京: 中国地质大学(北京), 2009.

    Chen Y F. Application and significance of RS technology during Late Cenozoic studies in Lujiang of Nujiang valley[D]. Beijing: China University of Geosciences(Beijing), 2009(in Chinese with English abstract).
    [32] 魏学利, 陈宝成, 樊圆圆, 等. 中巴公路奥布段冰碛土特征及其路用性能评价[J]. 路基工程, 2019(3): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201903002.htm

    Wei X L, Chen B C, Fan Y Y, et al. Characteristics and road performance evaluation of moraine soil in the Aobu Section of the Sino-Pakistan highway[J]. Subgrade Engineering, 2019(3): 6-13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201903002.htm
    [33] 杨金中. 遥感技术在工程地质选址工作中的应用[J]. 国土资源遥感, 2007, 19(4): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200704021.htm

    Yang J Z. The application of remote sensing to engineering geological site selection[J]. Remote Sensing for Land & Resources, 2007, 19(4): 90-94(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200704021.htm
    [34] 谢连文, 黄思静. 甚年轻沉积物的高分辨率遥感定年方法探讨: 以罗布泊盐湖为例[J]. 地质科技情报, 2003, 22(3): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200303016.htm

    Xie L W, Huang S J. Discussion of high resolution remote sensing dating method in the youngest sediments: As an example of Luobupo saline[J]. Geological Science and Technology Information, 2003, 22(3): 83-86(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200303016.htm
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  623
  • PDF下载量:  323
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-28

目录

    /

    返回文章
    返回