留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热-力耦合作用下能源群桩工作特性的数值模拟

董龙龙 梅国雄 吴文兵 王立兴 阮恒丰

董龙龙, 梅国雄, 吴文兵, 王立兴, 阮恒丰. 热-力耦合作用下能源群桩工作特性的数值模拟[J]. 地质科技通报, 2021, 40(6): 326-334. doi: 10.19509/j.cnki.dzkq.2021.0632
引用本文: 董龙龙, 梅国雄, 吴文兵, 王立兴, 阮恒丰. 热-力耦合作用下能源群桩工作特性的数值模拟[J]. 地质科技通报, 2021, 40(6): 326-334. doi: 10.19509/j.cnki.dzkq.2021.0632
Dong Longlong, Mei Guoxiong, Wu Wenbing, Wang Lixing, Ruan Hengfeng. Numerical simulation of working characteristics of energy pile group under thermo-mechanical coupling[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 326-334. doi: 10.19509/j.cnki.dzkq.2021.0632
Citation: Dong Longlong, Mei Guoxiong, Wu Wenbing, Wang Lixing, Ruan Hengfeng. Numerical simulation of working characteristics of energy pile group under thermo-mechanical coupling[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 326-334. doi: 10.19509/j.cnki.dzkq.2021.0632

热-力耦合作用下能源群桩工作特性的数值模拟

doi: 10.19509/j.cnki.dzkq.2021.0632
基金项目: 

国家自然科学基金项目 51678547

国家自然科学基金项目 51878634

浙江省自然科学基金杰出青年项目 LR21E080005

详细信息
    作者简介:

    董龙龙(1996-), 男, 现正攻读地质工程专业硕士学位, 主要从事桩基工程理论与技术方面的研究工作。E-mail: 2320265158@qq.com

    通讯作者:

    吴文兵(1988-), 男, 教授, 博士生导师, 主要从事桩基工程方面的研究与教学工作。E-mail: zjuwwb1126@163.com

  • 中图分类号: TU74

Numerical simulation of working characteristics of energy pile group under thermo-mechanical coupling

  • 摘要: 为研究能源群桩工作特性,基于Abaqus有限元模拟,将换热稳定阶段的平均温度赋予桩体进行稳态热-力耦合计算,提出了能源群桩承载特性的简化分析方法,并通过与现场数据的对比分析,验证了该研究方法的可行性。结合算例,进一步利用该方法对纯力学荷载和热-力耦合作用下的能源群桩的承载特性进行了分析。结果表明:①群桩基础中能源桩分散对称分布的不均匀沉降要明显小于集中分布,而且分布形式对桩基结构响应特征影响较大;②桩基等刚度下,增大桩径和减小桩间距,群桩倾斜控制效果较好。研究成果可以为能源群桩的工程应用提供一定的参考。

     

  • 图 1  A1桩身侧摩阻力分布曲线

    Figure 1.  Friction resistance distribution curves of energy pile A1

    图 2  A1桩身轴力分布曲线

    Figure 2.  Axial force distribution curves of energy pile A1

    图 3  群桩基础中各桩编号

    Figure 3.  Pile number in pile group foundation

    图 4  群桩基础不均匀沉降

    Figure 4.  Non-uniform settlement of pile group foundation

    图 5  基础底板不均匀沉降

    Figure 5.  Uneven settlement of foundation slab

    图 6  桩身轴力分布

    Figure 6.  Axial force distribution of pile

    图 7  桩身轴力分布

    Figure 7.  Axial force distribution of pile

    图 8  桩1加热侧摩阻力分布曲线

    Figure 8.  Friction resistance distribution curves of energy pile A1 at heating

    图 9  不同桩长下的基础倾斜

    Figure 9.  Foundation slope under different pile lengths

    图 10  不同桩径下的基础倾斜

    Figure 10.  Foundation tilt under different pile diameters

    表  1  桩-土力学及热物性参数

    Table  1.   Pile-soil mechanics and thermal property parameters

    桩身密度/
    (kg·m-3)
    桩体弹性模量/GPa 桩体泊松比 桩体热膨胀系数/
    (m· ℃-1)
    桩体导热系数/(W·
    m-1·℃-1)
    桩体比热容/
    (J·kg-1·
    -1)
    土体综合导热系数/(W·
    m-1·℃-1)
    土体综合比热容/(J·kg-1·
    -1)
    土体综合热膨胀系数/
    (m·℃-1)
    2 500 30 0.2 1.0×10-5 2.3 960 1.8 1 500 5.0×10-6
    下载: 导出CSV

    表  2  土层分布及物理力学参数

    Table  2.   Soil layer distribution and physical and mechanical parameters

    土层编号 土层 厚度/m 密度/(kg·m-3) 黏聚力/kPa 内摩擦角/(°) 泊松比 弹性模量 桩土摩擦系数
    ①-1 素填土 3.0 1 800 9 11.6 0.35 28 0.2
    表土 2.0 1 800 9 11.6 0.35 28 0.2
    粉质黏土 1.5 1 830 22 12.8 0.35 25 0.2
    淤泥质粉质黏土 2.0 1 830 13 10.0 0.40 15 0.2
    粉质黏土 5.0 1 940 42 15.0 0.35 80 0.2
    ⑤-1 粉土夹粉砂 6.0 1 840 8 25.1 0.30 100 0.3
    ⑤-2 粉砂夹粉土 6.0 1 860 6 27.1 0.30 140 0.3
    粉土 2.5 1 810 9 22.1 0.30 120 0.3
    粉土 12.0 1 840 8 25.2 0.30 200 0.3
    下载: 导出CSV

    表  3  不同能源桩布设形式的倾斜

    Table  3.   Tilt of different energy pile layout forms

    换热工况 单桩 临近双桩 对角双桩
    加热 倾斜/% 1.20 0.823 0.872
    降温 0.81 0.984 0.876
    下载: 导出CSV

    表  4  不同桩间距和承台厚度情况下的倾斜

    Table  4.   Tilting under different pile spacing and pile cap thickness

    编号 桩长/m 桩径/m 桩间距/m 承台厚度/m 倾斜/‰
    1 30 0.3 2.4 0.5 0.44
    2 30 0.3 3.0 0.5 0.93
    3 30 0.4 3.0 0.5 0.95
    4 30 0.4 3.0 0.6 0.67
    5 30 0.4 3.0 0.8 0.55
    6 30 0.4 3.0 1.0 0.53
    7 30 0.4 3.0 1.5 0.51
    下载: 导出CSV
  • [1] Laloui L, Nuth M, Vulliet L. Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 30(8): 763-781. doi: 10.1002/nag.499/pdf
    [2] Mc Cartney J S, Murphy K D. Strain distributions in full-scale energy foundations[J]. The Journal of the Deep Foundations Institute, 2012, 6(2): 26-38. doi: 10.1179/dfi.2012.008
    [3] 桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6): 1087-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201406018.htm

    Gui S Q, Cheng X H. In-situ tests on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201406018.htm
    [4] Stewart M A, Mccartney J S. Centrifuge modeling of soil-structure interaction in energy foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(4): 04013044. doi: 10.1061/(ASCE)GT.1943-5606.0001061
    [5] Ng C W W, Shi C, Gunawan A, et al. Centrifuge modelling of heating effects on energy pile performance in[J]. Canadian Geotechnical Journal, 2015, 52(8): 1045-1057. doi: 10.1139/cgj-2014-0301
    [6] 刘汉龙, 王成龙, 孔纲强, 等. 不同压实度下能量桩的热力学效应[J]. 中国科技论文, 2016, 11(13): 1511-1515. doi: 10.3969/j.issn.2095-2783.2016.13.016

    Liu H L, Wang C L, Kong G Q, et al. Thermal-mechanical characteristics of energy pile under different degree of compaction[J]. China Science Paper, 2016, 11(13): 1511-1515(in Chinese with English abstract). doi: 10.3969/j.issn.2095-2783.2016.13.016
    [7] 刘汉龙, 吴迪, 孔纲强, 等. 预埋与绑扎埋管形式能量桩传热特性研究[J]. 岩土力学, 2017, 38(2): 333-340. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702005.htm

    Liu H L, Wu D, Kong G Q, et al. Thermal response of energy piles with embedded tube and tied tube[J]. Rock and Soil Mechanics, 2017, 38(2): 333-340(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702005.htm
    [8] 孔纲强, 王成龙, 刘汉龙, 等. 多次温度循环对能量桩桩顶位移影响分析[J]. 岩土力学, 2017, 38(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704006.htm

    Kong G Q, Liu H L, Wang C L, et al. Analysis of pile head displacement of energy pile under repeated temperature cycling[J]. Rock and Soil Mechanics, 2017, 38(4): 1-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704006.htm
    [9] Knellwolf C, Péron H, Laloui L. Geotechnical analysis of heat exchanger piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(10): 890-902. doi: 10.1061/(ASCE)GT.1943-5606.0000513
    [10] 费康, 戴迪, 洪伟. 能量桩单桩工作特性简化分析方法[J]. 岩土力学, 2019, 40(1): 70-80, 90. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901004.htm

    Fei K, Dai D, Hong W. A simplified method for working performance analysis of single energy piles[J]. Rock and Soil Mechanics, 2019, 40(1): 70-80, 90(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901004.htm
    [11] 罗喆, 胡彪. 基于热力荷载传递原理的能量桩长期响应研究[J]. 防灾减灾工程学报, 2019, 39(4): 549-555, 563. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201904002.htm

    Luo Z, Hu B. Study on long-term response of energy pile based on thermal load transfer principle[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(4): 549-555, 563(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201904002.htm
    [12] 董龙龙, 吴文兵, 梁荣柱, 等. 基于指数模型的能源桩长期响应研究[J]. 岩石力学与工程学报, 2021, 40(3): 629-639. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103017.htm

    Dong L L, Wu W B, Liang R Z, et al. Study on long-term response of energy pile based on exponential model[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 629-639(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103017.htm
    [13] 蒋刚, 李仁飞, 王昊, 等. 摩擦型能源桩热-力耦合全过程承载性能分析[J]. 岩石力学与工程学报, 2019, 38(12): 2525-2534. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201912012.htm

    Jiang G, Li R F, Wang H, et al. Numerical analysis of the bearing capacity of floating energy piles during the full process of thermal-mechanical coupling[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2525-2534(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201912012.htm
    [14] Fang J, Kong G, Meng Y, et al. Thermomechanical behavior of energy piles and interactions within energy pile-raft foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(9): 04020079. doi: 10.1061/(ASCE)GT.1943-5606.0002333
    [15] Ng C, Ma Q J. Energy pile group subjected to non-symmetrical cyclic thermal loading in centrifuge[J]. Géotechnique Letters, 2019, 9(2): 1-17. http://www.researchgate.net/publication/334272138_Energy_pile_group_subjected_to_non-symmetrical_cyclic_thermal_loading_in_centrifuge
    [16] Jeong S, Lim H, Lee J K, et al. Thermally induced mechanical response of energy piles in axially loaded pile groups[J]. Applied Thermal Engineering, 2014, 71(1): 608-615. doi: 10.1016/j.applthermaleng.2014.07.007
    [17] Dupray F, Laloui L, Kazangba A. Numerical analysis of seasonal heat storage in an energy pile foundation[J]. Computers and Geotechnics, 2014, 55: 67-77. doi: 10.1016/j.compgeo.2013.08.004
    [18] Saggu R, Chakraborty T. Thermomechanical response of geothermal energy pile groups in sand[J]. International Journal of Geomechanics, ASCE, 2016, 16(4): 04015100. doi: 10.1061/(ASCE)GM.1943-5622.0000567
    [19] Salciarini D, Ronchi F, Cattoni E, et al. Thermo mechanical effects induced by energy piles operation in a small piled raft[J]. International Journal of Geomechanics, ASCE, 2015, 15(2): 04014042. doi: 10.1061/(ASCE)GM.1943-5622.0000375
    [20] Suryatriyastuti M E, Burlon S, Mroueh H. On the understanding of cyclic interaction mechanisms in an energy pile group[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(1): 3-24. doi: 10.1002/nag.2382
    [21] Peng H, Kong G, Liu H, et al. Thermo mechanical behaviour of floating energy pile groups in sand[J]. Journal of Zhejiang University: Science A, 2018, 19(8): 638-649. doi: 10.1631/jzus.A1700460
    [22] Murphy K D, Mccartney J S, Henry K S. Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations[J]. Acta Geotechnica, 2013, 10(2): 179-195. doi: 10.1007/s11440-013-0298-4
    [23] 费康, 朱志慧, 石雨恒, 等. 能量桩群桩工作特性简化分析方法研究[J]. 岩土力学, 2020, 41(12): 3889-3898. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012008.htm

    Fei K, Zhu Z H, Shi Y H, et al. A simplified method for geotechnical analysis of energy pile groups[J]. Rock and Soil Mechanics, 2020, 41(12): 3889-3898(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012008.htm
    [24] 陈根. 长桩型能源桩热-力耦合承载性能的现场测试与数值分析[D]. 南京: 南京工业大学, 2017.

    Chen G. Field test and numerical analysis of thermal-mechanical coupling bearing capacity of long pile type energy pile[D]. Nanjing: Nanjing Tech University, 2017(in Chinese with English abstract).
    [25] Batinia N, Alessandro F R L, Conti P, et al. Energy and geotechnical behaviour of energy piles for different design solutions[J]. Applied Thermal Engineering, 2015, 86: 199-213. doi: 10.1002/nag.2341
    [26] 龚晓南, 陈明中. 桩筏基础设计方案优化若干问题[J]. 土木工程学报, 2001, 34(4): 107-110. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200104017.htm

    Gong X N, Chen M Z. Some issues on the optimum design for a piled raft foundation[J]. Chinese Journal of Civil Engineering, 2001, 34(4): 107-110(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200104017.htm
    [27] 王忠凯, 徐光黎. 盾构施工对既有建(构)筑地基承载力影响及加固土体稳定性分析[J]. 地质科技通报, 2020, 39(4): 109-116. doi: 10.19509/j.cnki.dzkq.2020.0414

    Wang Z K, Xu G L. Effect of shield tunneling construction on bearing capacity of existing buildings and stability analysis of reinforced soil[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 109-116(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0414
    [28] 江强强, 焦玉勇, 骆进, 等. 能源桩传热与承载特性研究现状及展望[J]. 岩土力学, 2019, 40(9): 3351-3362, 3372. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909008.htm

    Jiang Q Q, Jiao Y Y, Luo J, et al. Review and prospect on heat transfer and bearing performance of energy piles[J]. Rock and Soil Mechanics, 2019, 40(9): 3351-3362, 3372(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909008.htm
    [29] 陈鑫, 向先超, 刘凯, 等. 小桩距下的抗滑桩后滑坡推力分布规律分析[J]. 地质科技情报, 2019, 38(6): 157-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906019.htm

    Chen X, Xiang X C, Liu K, et al. Thrust distribution law of anti-slide pile under small pile spacing[J]. Geological Science and Technology Information, 2019, 38(6): 157-164(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906019.htm
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  721
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01

目录

    /

    返回文章
    返回