留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地下水循环结构的动力学研究进展

万力 王旭升 蒋小伟

万力, 王旭升, 蒋小伟. 地下水循环结构的动力学研究进展[J]. 地质科技通报, 2022, 41(1): 19-29. doi: 10.19509/j.cnki.dzkq.2022.0003
引用本文: 万力, 王旭升, 蒋小伟. 地下水循环结构的动力学研究进展[J]. 地质科技通报, 2022, 41(1): 19-29. doi: 10.19509/j.cnki.dzkq.2022.0003
Wan Li, Wang Xusheng, Jiang Xiaowei. Advances in dynamics of groundwater circulation patterns[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 19-29. doi: 10.19509/j.cnki.dzkq.2022.0003
Citation: Wan Li, Wang Xusheng, Jiang Xiaowei. Advances in dynamics of groundwater circulation patterns[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 19-29. doi: 10.19509/j.cnki.dzkq.2022.0003

地下水循环结构的动力学研究进展

doi: 10.19509/j.cnki.dzkq.2022.0003
基金项目: 

国家自然科学基金项目 41772249

详细信息
    作者简介:

    万力(1962-), 男, 教授, 博士生导师, 主要从事水文地质教学和科研工作。E-mail: wanli@cugb.edu.cn

    通讯作者:

    王旭升(1974-), 男, 教授, 博士生导师, 主要从事地下水动力学研究工作。E-mail: wxsh@cugb.edu.cn

  • 中图分类号: P641

Advances in dynamics of groundwater circulation patterns

  • 摘要: 由地下水补给、径流和排泄过程构成的地下水循环运动,是水文循环的重要组成部分,也是水文地质学的基本研究对象。地下水循环在空间上表现为不同结构单元的组合,存在以含水层特性为依据的介质结构和以渗流场为依据的动力结构2种划分方法。地下水流系统是动力结构意义上的地下水循环单元。近10年来,区域地下水流系统理论取得了显著进展,更加全面深入地揭示了地下水循环结构的动力学特性。通过对河间地块地下水流系统的研究,发现潜水面最高点并非地下水分水岭的准确位置。在盆地尺度上,系统研究了沟谷地貌、降水入渗强度、渗透性随埋深变化和盆地厚度等因素对潜水面波形与地下水循环动力结构的影响,初步发现了动力结构的周期性或趋势性演化特征。通过大规模流线路径的精细识别或驻留时间的统计分析,提出了三维地下水循环单元的划分方法。在水文地质效应方面,发现地下水循环的动力结构对地下水年龄的分布有重要影响。地下水循环的动力结构反映了不同补给区和排泄区之间的水力联系,在盆地尺度地球化学过程、流域尺度生态水文过程中发挥着关键作用,未来的研究重点是三维地下水循环的动力特性和演变规律。

     

  • 图 1  地下水循环的结构单元示意图

    a.含介质结构(改自文献[12]);b.剖面动力结构(改自文献[7]);c.平面动力结构(改自文献[13]);d.三维动力结构(改自文献[17])

    Figure 1.  Illustrations of structural elements in groundwater circulation

    图 2  几种河间地块剖面模型

    a.Dupuit-Forchheimer模型(改自文献[13]);b.对称流网(改自文献[22]);c.均匀介质不对称流网(改自文献[23-24]);d.非均匀介质不对称流网

    Figure 2.  Several profile models of an aquifer-block between streams

    图 3  波状潜水面模型及其地下水循环动力结构

    a.渗透性随深度衰减的影响(改自文献[30]);b.各向异性的影响(改自文献[31]);c.入渗强度的影响(改自文献[33]);d.盆地深度的影响(改自文献[34])

    Figure 3.  Undulating water table models and their groundwater circulation dynamic patterns

    图 4  潜水面周期性变化模型

    a.跷跷板型(改自文献[36]);b.同期涨落型(改自文献[37])

    Figure 4.  Models of periodical change in water table

    图 5  三维地下水循环结构的模拟识别案例

    a.荷兰Regge河地区1850年地下水流系统(改自文献[18]);b.中国鄂尔多斯高原中部湖泊群地下水循环单元(改自文献[17])

    Figure 5.  Simulated identification cases of three-dimensional groundwater circulation patterns

    图 6  地下水循环动力结构控制地下水年龄分布的案例

    a.长度6 km假想剖面模拟结果(改自文献[55]);b.鄂尔多斯高原大克泊-胡同察汗淖剖面模拟和钻孔实测结果(改自文献[56])

    Figure 6.  Cases of the groundwater age distribution dominated by groundwater circulation dynamic patterns

  • [1] 沈照理, 刘光亚, 杨成田, 等. 水文地质学[M]. 北京: 科学出版社, 1985.

    Shen Z L, Liu Y G, Yang C T, et al. Hydrogeology[M]. Beijing: Science Press, 1985(in Chinese).
    [2] 林学钰, 廖资生, 赵勇胜, 等. 现代水文地质学[M]. 北京: 地质出版社, 2005.

    Lin X Y, Liao Z S, Zhao Y S, et al. Advances in hydrogeology[M]. Beijing: Geological Publishing House, 2005(in Chinese).
    [3] Duffy C J, Al-Hassan S. Groundwater circulation in a closed desert basin: Topographic scaling and climatic forcing[J]. Water Resources Research, 1988, 24(10): 1675-1688. doi: 10.1029/WR024i010p01675
    [4] Manning A H, Solomon D K. An integrated environmental tracer approach to characterizing groundwater circulation in a mountain block[J]. Water Resources Research, 2005, 41(12): 1944-1973.
    [5] Frisbee M D, Tolley D G, Wilson J L. Field estimates of groundwater circulation depths in two mountainous watersheds in the western U.S. and the effect of deep circulation on solute concentrations in streamflow[J]. Water Resources Research, 2017, 53(4): 2693-2715. doi: 10.1002/2016WR019553
    [6] 张宏仁. 地下水水力学的发展[M]. 北京: 地质出版社, 1992.

    Zhang H R. Development of groundwater hydraulics[M]. Beijing: Geological Publishing House, 1992(in Chinese).
    [7] Tóth J. A theoretical analysis of groundwater flow in small drainage basins[J]. Journal of Geophysics Research, 1963, 68(16): 4795-4812. doi: 10.1029/JZ068i016p04795
    [8] 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 第7版. 北京: 地质出版社, 2018.

    Zhang R Q, Liang X, Jin M G, et al. Fundamentals of hydrogeology[M]. 7th Edition. Beijing: Geological Publishing House, 2018(in Chinese).
    [9] 梁杏, 张人权, 牛宏, 等. 地下水流系统理论与研究方法的发展[J]. 地质科技情报, 2012, 31(5): 143-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205020.htm

    Liang X, Zhang R Q, Niu H, et al. Development of the theory and research method of groundwater flow system[J]. Geological Science and Technology Information, 2012, 31(5): 143-151(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205020.htm
    [10] 蒋小伟, 万力, 王旭升. 区域地下水流理论进展[M]. 北京: 地质出版社, 2013.

    Jiang X W, Wan L, Wang X S. Advances in the theory of regional groundwater flow[M]. Beijing: Geological Publishing House, 2013(in Chinese).
    [11] 梁杏, 张人权, 靳孟贵. 地下水流系统: 理论、应用、调查[M]. 北京: 地质出版社, 2015.

    Liang X, Zhang R Q, Jin M G. Groundwater flow systems: Theory, application and investigation[M]. Beijing: Geological Publishing House, 2015(in Chinese).
    [12] McWhorter D B, Sunada D K. Groundwater hydrology and hydraulics[M]. Fort Collins: Water Resources Publications, 1977: 24-53.
    [13] Bear J. Hydraulics of groundwater[M]. New York: McGraw-Hill, 1979.
    [14] 薛禹群, 吴吉春. 地下水动力学[M]. 第3版. 北京: 地质出版社, 2010.

    Xue Y Q, Wu J C. Groundwater hydraulics[M]. 3th Edition. Beijing: Geological Publishing House, 2010(in Chinese).
    [15] 陈崇希, 林敏, 成建梅. 地下水动力学[M]. 第5版. 北京: 地质出版社, 2011.

    Chen C X, Lin M, Cheng J M. Groundwater hydraulics[M]. 5th Edition. Beijing: Geological Publishing House, 2011(in Chinese).
    [16] 王旭升, 万力. 地下水运动方程[M]. 北京: 地质出版社, 2011.

    Wang X S, Wan L. Equations of groundwater hydraulics[M]. Beijing: Geological Publishing House, 2011(in Chinese).
    [17] Wang X S, Wan Li, Jiang X W, et al. Identifying three-dimensional nested groundwater flow systems in a Tóthian basin[J]. Advances in Water Resources, 2017, 108: 139-156. doi: 10.1016/j.advwatres.2017.07.016
    [18] Engelen G B, Kloosterman F H. Hydrological systems analysis: Methods and applications[M]. Dordrecht: Kluwer Academic Publishers, 1996.
    [19] 水利部水利水电规划设计总院. 中国水资源及其开发利用调查评价[M]. 北京: 中国水利水电出版社, 2004.

    General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources. Investigation and assessment on water resources and its exploitation and utilization in China[M]. Beijing: China Water Power Press, 2004(in Chinese).
    [20] Somers L D, McKenzie J M. A review of groundwater in high mountain environments[J]. WIREs Water, 2020, 7: 1-27.
    [21] Bear J. Dynamics of fluids in porous media[M]. New York: Elsevier, 1972.
    [22] Hubbert M K. The theory of ground-water motion[J]. Journal of Geology, 1940, 48: 785-944. doi: 10.1086/624930
    [23] Han P F, Wang X S, Wan Li, et al. The exact groundwater divide on water table between two rivers: A fundamental model investigation[J]. Water, 2019, 11(4): 1-10.
    [24] Li R, Wang X S. Analytical investigation of the exact groundwater divide between rivers beyond the Dupuit- Forchheimer approximation[J]. Hydrological Processes, 2021, 35: 1-16. doi: 10.1002/hyp.13809
    [25] Freeze R A, Witherspoon P A. Theoretical analysis of regional groundwater flow: 2. Effect of water-table configuration and subsurface permeability variation[J]. Water Resources Research, 1967, 3(2): 623-634. doi: 10.1029/WR003i002p00623
    [26] 万力, 蒋小伟, 王旭升. 含水层的一种普遍规律: 渗透系数随深度衰减[J]. 高校地质学报, 2010, 16(1): 7-12. doi: 10.3969/j.issn.1006-7493.2010.01.002

    Wan L, Jiang X W, Wang X S. A common regularity of aquifers: The decay in hydraulic conductivity with depth[J]. Geological Journal of China Universities, 2010, 16(1): 7-12(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2010.01.002
    [27] Jiang X W, Wang X S, Wan L. Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media[J]. Hydrogeology Journal, 2010, 18(4): 839-850. doi: 10.1007/s10040-010-0575-3
    [28] Kuang X, Jiao J J. An integrated permeability-depth model for Earth's crust[J]. Geophysical Research Letters, 2014, 41(21): 7539-7545. doi: 10.1002/2014GL061999
    [29] Jiang X W, Wan L, Wang X S, et al. Effect of exponential decay in hydraulic conductivity with depth on regional groundwater flow[J]. Geophysical Research Letters, 2009, 36(24): 1-4.
    [30] Jiang X W, Wang X S, Wan L, et al. An analytical study on stagnation points in nested flow systems in basins with depth-decaying hydraulic conductivity[J]. Water Resources Research, 2011, 47(1): 1-16.
    [31] Wang X S, Jiang X W, Wan L, et al. A new analytical solution of topography-driven flow in a drainage basin with depth-dependent anisotropy of permeability[J], Water Resources Research, 2011, 47(9): 1-5.
    [32] Liang X, Liu Y, Jin M G, et al. Direct observation of complex Tóthian groundwater flow systems in the laboratory[J]. Hydrological Processes, 2010, 24: 3568-3573. doi: 10.1002/hyp.7758
    [33] 梁杏, 牛宏, 张人权, 等. 盆地地下水流模式及其转化与控制因素[J]. 地球科学: 中国地质大学学报, 2012, 37(2): 269-273. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202011.htm

    Liang X, Niu H, Zhang R Q, et al. Basinal groundwater flow patterns and their transformation and dominant factors[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(2): 269-273(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202011.htm
    [34] Liang X, Quan D, Jin M G, et al. Numerical simulation of groundwater flow patterns using flux as upper boundary[J]. Hydrological Processes, 2013, 27: 3475-3483. doi: 10.1002/hyp.9477
    [35] Wang J Z, Jiang X W, Wan L, et al. An analytical study on groundwater flow in drainage basins with horizontal wells[J]. Hydrogeology Journal, 2014, 22(7): 1625-1638. doi: 10.1007/s10040-014-1146-9
    [36] Vandenberg A. Regional groundwater motion in response to an oscillating water table[J]. Journal of Hydrology, 1980, 47: 333-348. doi: 10.1016/0022-1694(80)90102-X
    [37] Zhao K Y, Jiang X W, Wang X S, et al. An analytical study on nested flow systems in a Tóthian Basin with a periodically changing water table[J]. Journal of Hydrology, 2018, 556: 813-823. doi: 10.1016/j.jhydrol.2016.09.051
    [38] Dai X, Xie Y, Simmons C T, et al. Understanding topography-driven groundwater flow using fully-coupled surface-water and groundwater modeling[J]. Journal of Hydrology, 2021, 594: 1-12.
    [39] 张人权, 梁杏, 靳孟贵. 末次盛冰期以来河北平原第四系地下水流系统的演变[J]. 地学前缘, 2013, 20(3): 217-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303026.htm

    Zhang R Q, Liang X, Jin M G. The evolution of groundwater flow systems in Quaternary of the Hebei Plain since the Last Glacial Maximum[J]. Geoscience Frontiers, 2013, 20(3): 217-226(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303026.htm
    [40] Wörman A, Packman A I, Marklund L, et al. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography[J]. Geophysical Research Letters, 2006, 33(7): 1-4.
    [41] Marklund L, Wörman A. The use of spectral analysis-based exact solutions to characterize topography-controlled groundwater flow[J]. Hydrogeology Journal, 2011, 19(8): 1531-1543. doi: 10.1007/s10040-011-0768-4
    [42] Wang J Z, Jiang X W, Zhang Z Y, et al. An analytical study on three-dimensional versus two-dimensional water table-induced flow patterns in a Tóthian basin[J]. Hydrological Processes, 2017, 31: 4006-4018. doi: 10.1002/hyp.11317
    [43] Winter T C. Numerical simulation of steady state three-dimensional groundwater flow near lakes[J]. Water Resources Research, 1978, 14(2): 245-254. doi: 10.1029/WR014i002p00245
    [44] 周鹏宇, 蒋小伟, 万力, 等. 三维Tóth型盆地的驻线及其对多级次水流系统的控制[J]. 地质科技通报, 2022, 41(1): 203-208. doi: 10.19509/j.cnki.dzkq.2021.0017

    Zhou P Y, Jiang X W, Wan L, et al. Stagnation lines and its control of nested groundwater flow systems in three-dimensional Tóthian basins[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 203-208(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0017
    [45] Zijl W. Numerical simulations based on stream functions and velocities in three-dimensional groundwater flow[J]. Journal of Hydrology, 1986, 85(3/4): 349-365.
    [46] Zijl W, Brouwer G K, Waardenburg F D E, et al. FLOSA: A tool for regional three-dimensional flow systems analysis[C]//Jousma G, Bear J, Haimes Y Y, et al. Groundwater contamination: Use of models in decision-making. Amsterdam: Springer Netherlands, 1989.
    [47] Haitjema H M. On the residence time distribution in idealized groundwater sheds[J]. Journal of Hydrology, 1995, 172(1/4): 127-146.
    [48] Wörman A, Packman A I, Marklund L, et al. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield[J]. Geophysical Research Letters, 2007, 34(7): 1-5.
    [49] Basu N B, Jindal P, Schilling K E, et al. Evaluation of analytical and numerical approaches for the estimation of groundwater travel time distribution[J]. Journal of Hydrology, 2012, 475: 65-73. doi: 10.1016/j.jhydrol.2012.08.052
    [50] Goderniaux P, Davy P, Bresciani E, et al. Partitioning a regional groundwater flow system into shallow local and deepregional flow compartments[J]. Water Resources Research, 2013, 49(4): 2274-2286. doi: 10.1002/wrcr.20186
    [51] Wang J Z, Wörman A, Etienne B, et al. On the use of late-time peaks of residence time distributions for the characterization of hierarchically nested groundwater flow systems[J]. Journal of Hydrology, 2016, 543: 47-58. doi: 10.1016/j.jhydrol.2016.04.034
    [52] Tóth J. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations[J]. Hydrogeology Journal, 1999, 7(1): 1-14. doi: 10.1007/s100400050176
    [53] 约瑟夫·托特. 重力驱动地下水流系统理论及其应用[M]. 张人权, 梁杏, 靳孟贵, 等译. 北京: 地质出版社, 2015.

    Tóth J. Gravitational systems of groundwater flow: Theory, evaluation, utilization[M]. Zhang R Q, Liang X, Jin M G, et al. (Trans. )Beijing: Geological Publishing House, 2015(in Chinese).
    [54] Jiang X W, Wan L, Cardenas M B, et al. Simultaneous rejuvenation and aging of groundwater in basins due to depth-decaying hydraulic conductivity and porosity[J]. Geophysical Research Letters, 2010, 37(5): 1-4.
    [55] Jiang X W, Wan L, Ge S, et al. A quantitative study on accumulation of age mass around stagnation points in nested flow systems[J]. Water Resources Research, 2012, 48(12): 1-14.
    [56] Zhang J, Wang X S, Yin L, et al. Inflection points on groundwater age and geochemical profiles along wellbores light up hierarchically nested flow systems[J]. Geophysical Research Letters, 2021, 48(16): e2020GL092337.
    [57] Gleeson T, Manning A H. Regional groundwater flow in mountainous terrain: Three-dimensional simulations of topographic and hydrogeologic controls[J]. Water Resources Research, 2008, 44: 1-16.
    [58] Genereux D P, Jordan M T, Carbonell D. A paired-watershed budget study to quantify interbasin groundwater flow in a lowland rain forest, Costa Rica[J]. Water Resources Research, 2005, 41(4): 1-17.
    [59] Bouaziz L, Weerts A, Schellekens J, et al. Redressing the balance: Quantifying net intercatchment groundwater flows[J]. Hydrology & Earth System Sciences, 2018, 22: 6415-6434.
    [60] Fan Y. Are catchments leaky?[J]. WIREs Water, 2019, 6: 1-25.
    [61] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103
  • 加载中
图(6)
计量
  • 文章访问数:  1656
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-31
  • 网络出版日期:  2022-03-02

目录

    /

    返回文章
    返回